Show simple item record

Professor Advisordc.contributor.advisorOrchard Concha, Marcos Eduardo
Professor Advisordc.contributor.advisorMaldonado Arbogast, Pedro Esteban
Professor Advisordc.contributor.advisorVergara Ortúzar, Rodrigo
Authordc.contributor.authorJaras Castaños, Ismael Sebastián
Associate professordc.contributor.otherZañartu Salas, Matías
Associate professordc.contributor.otherEstévez Valencia, Pablo
Associate professordc.contributor.otherOrio Álvarez, Patricio
Admission datedc.date.accessioned2023-07-17T23:11:41Z
Available datedc.date.available2023-07-17T23:11:41Z
Publication datedc.date.issued2023
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/194752
Abstractdc.description.abstractEvery biological tissue or physical system is subject to physical restrictions that limit its functioning. Specifically in neural networks, energy constraints determine physically feasible states in which they can evolve. However, this fundamental concept of energy has been largely overlooked when modeling and simulating the dynamics of neural networks. This thesis aims to formalize, study and simulate the dynamics and structure that emerges in spiking neural networks when there are local metabolic restrictions that affect behavior at the neuronal and synaptic level. In particular, through the creation of an energy dependent single-neuron model and an energy dependent plasticity rule, the impact generated by different types and intensities of energy constraints on connectivity and activity in an excitatory-inhibitory balanced network is studied both analytically and through simulation. When neurons and synapses are sensitive to energy imbalances, metabolic stable fixed points appear at the network level, which are mathematically described and validated through simulations. The developed framework allows the study of neural networks under impaired metabolic conditions. Therefore, the proposed theoretical and simulation framework introduced in this work could be valuable to deepen the knowledge about the relationship between neurodegenerative diseases and metabolic impairments at the neuronal, synaptic, and network levels.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Títulodc.titleEnergetics, dynamics and structure of spiking neural networks under metabolic constraintses_ES
Document typedc.typeTesises_ES
dc.description.versiondc.description.versionVersión original del autores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ingeniería Eléctricaes_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES
uchile.carrerauchile.carreraIngeniería Civil Eléctricaes_ES
uchile.gradoacademicouchile.gradoacademicoDoctoradoes_ES
uchile.notadetesisuchile.notadetesisTesis para optar al grado de Doctor en Ingeniería Eléctricaes_ES


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States