Show simple item record

Authordc.contributor.authorValencia, Felipe 
Authordc.contributor.authorGonzález, Rafael I. 
Authordc.contributor.authorTramontina, Diego 
Authordc.contributor.authorRogan Castillo, José 
Authordc.contributor.authorValdivia Hepp, Juan 
Authordc.contributor.authorKiwi Tichauer, Miguel 
Authordc.contributor.authorBringa, Eduardo 
Admission datedc.date.accessioned2017-10-31T14:01:16Z
Available datedc.date.available2017-10-31T14:01:16Z
Publication datedc.date.issued2016-10-20
Cita de ítemdc.identifier.citationJ. Phys. Chem. C 2016, 120, 23836−23841es_ES
Identifierdc.identifier.other10.1021/acs.jpcc.6b07895
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/145413
Abstractdc.description.abstractThe potential and properties of palladium hollow nano particles (hNPs) as a possible H storage material are explored by means of classical molecular dynamics (MD) simulations. First, we study the stability of pure Pd hNPs for different sizes and thicknesses, obtaining good agreement with experimental results for nanometer size Pd hNP. Next we add, every 100 fs, single H atoms into the NP cavity. During the first stages of the simulation, our results show hydride formation on the inner surface, similar to what has been observed in experiments on Pd surfaces and NPs. Formation of the Pd hydride decreases the absorption rate, and H gas is formed inside the cavity. The maximum H gas pressure that is reached is of 7 GPa, before fractures appear in the hNP, and consequently the hNP breaks up. We obtain a maximum H/Pd ratio of 1.21 when H is introduced only inside the cavity. However, when H is deposited both on the inside and outside surfaces, this ratio reaches 1.70, which is 25% larger than previous reports. Beyond this ratio, the hNP breaks up, and the H gas is ejected from the hNP cavity.es_ES
Patrocinadordc.description.sponsorshipThis work was supported by the Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) under grants #3140526 (RG), #1160639 and 1130272 (MK and JR), and Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB-0807 (RG, FV, JM, MK and JR). EMB and DT thank support from PICT-2014-0696 (ANPCyT) and M003 (SeCTyP-UN Cuyo) grant. DT was supported by CONICET Postdoctoral Fellowship Grant and ANPCyt PICT-2015-0040. FV was supported by CONICYT Doctoral Fellowship grant #21140948.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmerican Chemical Societyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceJournal of Physical Chemistry Ces_ES
Keywordsdc.subjectMolecular-dynamics simulationses_ES
Keywordsdc.subjectEmbedded-atom methodes_ES
Keywordsdc.subjectPd nanoparticleses_ES
Keywordsdc.subjectLithium storagees_ES
Keywordsdc.subjectFormic-acides_ES
Keywordsdc.subjectNanocrystalline palladiumes_ES
Keywordsdc.subjectControllable synthesises_ES
Keywordsdc.subjectCarbon sphereses_ES
Keywordsdc.subjectNanosphereses_ES
Keywordsdc.subjectAbsorptiones_ES
Títulodc.titleHydrogen Storage in Palladium Hollow Nanoparticleses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorffces_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile