Show simple item record

Authordc.contributor.authorLagos González, Tomás 
Authordc.contributor.authorMoreno Vieyra, Rodrigo 
Authordc.contributor.authorNavarro Espinosa, Alejandro 
Authordc.contributor.authorPanteli, Mathaios 
Authordc.contributor.authorSacaan Amunátegui, Rafael 
Authordc.contributor.authorOrdóñez, Fernando 
Authordc.contributor.authorRudnick, Hugh 
Authordc.contributor.authorMancarella, Pierluigi 
Admission datedc.date.accessioned2020-05-25T13:53:59Z
Available datedc.date.available2020-05-25T13:53:59Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationIEEE Transactions on Power Systems, Vol. 35, No. 2, (2020)es_ES
Identifierdc.identifier.other10.1109/TPWRS.2019.2945316
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/174925
Abstractdc.description.abstractAlthough extreme natural disasters have occurred all over the world throughout history, power systems planners do not usually recognize them within network investment methodologies. Moreover, planners had historically focused on reliability approaches based on average (rather than risk) performance indicators, undermining the effects of high impact and low probability events on investment decisions. To move towards a resilience centred approach, we propose a practical framework that can be used to identify network investments that offer the highest level of hedge against risks caused by natural hazards. In a first level, our framework proposes network enhancements and, in a second level, uses a simulation to evaluate the resilience level improvements associated with the network investment propositions. The simulator includes 4 phases: threat characterization, vulnerability of systems components, system response, and system restoration, which are simulated in a sequential Monte Carlo fashion. We use this modeling framework to find optimal portfolio solutions for resilient network enhancements. Through several case studies with applications to earthquakes, we distinguish the fundamental differences between reliability- and resilience-driven enhancements, and demonstrate the advantages of combining transmission investments with installation of backup distributed generation.es_ES
Patrocinadordc.description.sponsorshipEngineering & Physical Sciences Research Council (EPSRC) EP/N034899/1 Newton-Picarte/MR/N026721/1 Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT) EP/N034899/1 Newton-Picarte/MR/N026721/1 TERSE: Techno-Economic framework for Resilient and Sustainable Electrification EP/R030294/1 Complex Engineering Systems Institute CONICYT PIA/BASAL AFB180003 Powered@NLHPC supercomputing infrastructure ECM-02 Newton Fund Fondecyt/1181928 Fondecyt/1181136 SERC Fondap/15110019es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceIEEE Transactions on Power Systemses_ES
Keywordsdc.subjectResilient network planninges_ES
Keywordsdc.subjectNatural hazardses_ES
Keywordsdc.subjectEarthquakeses_ES
Keywordsdc.subjectResiliencees_ES
Keywordsdc.subjectReliabilityes_ES
Títulodc.titleIdentifying optimal portfolios of resilient network Investments against natural hazards, With applications to earthquakeses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile