Show simple item record

Authordc.contributor.authorBianchi Palacios, Ernesto 
Authordc.contributor.authorGiordano, Valentina 
Authordc.contributor.authorLund Plantat, Fernando 
Admission datedc.date.accessioned2020-06-09T21:07:57Z
Available datedc.date.available2020-06-09T21:07:57Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationPhysical Review B 101, 174311 (2020)es_ES
Identifierdc.identifier.other10.1103/PhysRevB.101.174311
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175350
Abstractdc.description.abstractIn this work we present an implementation of the analytical string theory recently applied to the description of glasses. These are modeled as continuum media with embedded elastic string heterogeneities, randomly located and randomly oriented, which oscillate around a straight equilibrium position with a fundamental frequency depending on their length. The existence of a length distribution is reflected then in a distribution of oscillation frequencies which is responsible for the boson peak in the glass density of states. Previously, it has been shown that such a description can account for the elastic anomalies reported at frequencies comparable with the boson peak: the strong phonon scattering and the negative dispersion in the sound velocity, as a result of the interference of the string oscillations with propagating sound plane waves. Here we start from the generalized hydrodynamics to determine the dynamic correlation function S(k, omega) associated with the coherent, dispersive, and attenuated sound waves resulting from such interference. We show that once the vibrational density of states has been measured, we can use it for unambiguously fixing the string length distribution inherent to a given glass. The density-density correlation function obtained using such distribution is strongly constrained, and able to account for the experimental data collected on two prototypical glasses with very different microscopic structure and fragility: glycerol and silica. The obtained string length distribution is compatible with the typical size of elastic heterogeneities previously reported for silica and supercooled liquids, and the atomic motion associated with the string dynamics is consistent with the soft modes recently identified in large-scale numerical simulations as nonphonon modes responsible for the boson peak. The theory is thus in agreement with the most recent advances in the understanding of the glass-specific dynamics and offers an appealing, simple understanding of the microscopic origin of the latter, while raising new questions on the universality or material specificity of the string distribution properties.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1191179 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) C17E02es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmerican Physical Societyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourcePhysical Review Bes_ES
Keywordsdc.subjectLow-frequency vibrationses_ES
Keywordsdc.subjectBoson peakes_ES
Keywordsdc.subjectThermal-conductivityes_ES
Keywordsdc.subjectLength scalees_ES
Keywordsdc.subjectScatteringes_ES
Keywordsdc.subjectDensityes_ES
Keywordsdc.subjectMotiones_ES
Keywordsdc.subjectExcitationses_ES
Keywordsdc.subjectPotentialses_ES
Keywordsdc.subjectUltrasoundes_ES
Títulodc.titleElastic anomalies in glasses: Elastic string theory understanding of the cases of glycerol and silicaes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile