Show simple item record

Authordc.contributor.authorHall, C. 
Authordc.contributor.authorDong, R. 
Authordc.contributor.authorTeague, R. 
Authordc.contributor.authorTerry, J. 
Authordc.contributor.authorPinte, C. 
Authordc.contributor.authorPaneque Carreño, T. 
Authordc.contributor.authorVeronesi, B. 
Authordc.contributor.authorAlexander, R. D. 
Authordc.contributor.authorLodato, G. 
Admission datedc.date.accessioned2021-05-19T21:57:07Z
Available datedc.date.available2021-05-19T21:57:07Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationAstrophysical Journal Volumen: 904 Número: 2 Número de artículo: 148 Dec 2020es_ES
Identifierdc.identifier.other10.3847/1538-4357/abac17
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/179704
Abstractdc.description.abstractObservations with the Atacama Large Millimeter/Submillimeter Array (ALMA) have dramatically improved our understanding of the site of exoplanet formation: protoplanetary disks. However, many basic properties of these disks are not well understood. The most fundamental of these is the total disk mass, which sets the mass budget for planet formation. Disks with sufficiently high masses can excite gravitational instability and drive spiral arms that are detectable with ALMA. Although spirals have been detected in ALMA observations of the dust, their association with gravitational instability, and high disk masses, is far from clear. Here we report a prediction for kinematic evidence of gravitational instability. Using hydrodynamics simulations coupled with radiative transfer calculations, we show that a disk undergoing such instability has clear kinematic signatures in molecular line observations across the entire disk azimuth and radius, which are independent of viewing angle. If these signatures are detected, it will provide the clearest evidence for the occurrence of gravitational instability in planet-forming disks, and provide a crucial way to measure disk masses.es_ES
Patrocinadordc.description.sponsorshipWinton Philanthropies/The David and Claudia Harding Foundation European Commission 823823 Australian Research Council FT170100040 DP180104235 Smithsonian Institution Natural Sciences and Engineering Research Council of Canada (NSERC) CGIAR European Research Council (ERC) 681601 BEIS capital funding via STFC capital grants ST/K000373/1 ST/R002363/1 STFC DiRAC Operations grant ST/R001014/1es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIOP Publishinges_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAstrophysical Journales_ES
Keywordsdc.subjectProtoplanetary diskses_ES
Títulodc.titlePredicting the kinematic evidence of gravitational instabilityes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile