Show simple item record

Authordc.contributor.authorBlunier, Sylvain
Authordc.contributor.authorToledo Cabrera, Benjamín
Authordc.contributor.authorRogan Castillo, José
Authordc.contributor.authorValdivia Hepp, Juan
Admission datedc.date.accessioned2021-10-14T14:31:54Z
Available datedc.date.available2021-10-14T14:31:54Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationSpace Weather-The International Journal of Research and Applications Volume19 Issue 6 Article Numbere2020SW002634 Jun 2021es_ES
Identifierdc.identifier.other10.1029/2020SW002634
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/182252
Abstractdc.description.abstractWe propose a method, based on Neural Networks, that detects the nonlinear robust interplanetary solar wind variables, with varying delays, driving the coupled behavior of three geomagnetic indices (Dst, AL, and AU). As opposed to minimizing a prediction error, the method is based on degrading the prediction by distorting the inputs of the trained Neural Networks in order to highlight the most sensible drivers. We show that the z component of the magnetic field, the duskward oriented electric field, and the speed of the particles of the interplanetary medium, at particular time delays, seem to be the most efficient drivers of the three coupled geomagnetic indices. Using only the sensible or robust drivers in the model, we demonstrate that iterated predictions during geomagnetic storm are significantly improved from models that only use one of the outstanding drivers with multiple time delays. The derived robust nonlinear Neural Network model is also a significant improvement over linear approximations, specially when used as iterated predictors.es_ES
Patrocinadordc.description.sponsorshipNational Agency for Research and Development (ANID) under Fondecyt 1190703 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1190662 CEDENNA through "Financiamiento Basal para Centros Cienificos y Tecnologico de Excelencia" FB0807 United States Department of Defense Air Force Office of Scientific Research (AFOSR) FA955020-1-0189 Appeared in source as:Air Force Office of Scientific Research FA9550-19-1-0384 Appeared in source as:Air Force Office of Scientific Researches_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmer Geophysical Uniones_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceSpace Weather-The International Journal of Research and Applicationses_ES
Keywordsdc.subjectGeomagnetic Stormses_ES
Keywordsdc.subjectNeural Networkses_ES
Keywordsdc.subjectSolar Windes_ES
Títulodc.titleA nonlinear system science approach to find the robust solar wind drivers of the multivariate magnetospherees_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States