Show simple item record

Authordc.contributor.authorDonoso Cisternas, Sergio Felipe
Authordc.contributor.authorCárdenas Dobson, Jesús Roberto Pedro Alejandro
Authordc.contributor.authorEspinoza, Mauricio
Authordc.contributor.authorClare, Jon
Authordc.contributor.authorMora, Andrés
Authordc.contributor.authorWatson, Alan
Admission datedc.date.accessioned2021-11-24T20:00:50Z
Available datedc.date.available2021-11-24T20:00:50Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationIEEE Access 9 (2021) 3054340es_ES
Identifierdc.identifier.other10.1109/ACCESS.2021.3054340
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/182869
Abstractdc.description.abstractIn a hybrid modular multilevel converter (MMC), capacitor voltage balance between the Full-Bridge Sub-Modules (FBSMs) and Half-Bridge Sub-Modules (HBSMs) is only possible when the arm currents are bipolar. For a grid-connected MMC, operating at unity power factor, this is typically only achievable when the modulation index is less than 2. Previous control methodologies, based on open-loop feed-forward compensating currents, have been proposed to operate an MMC with a higher modulation index. However, these solutions do not minimize the compensating currents; they cannot compensate entirely for both the variations in the operating conditions and the parameters typically encountered in a real implementation; and they do not consider the actual capacitor voltage imbalance between the FBSM and HBSMs. In this paper, a new nested closed-loop control algorithm based on an outer voltage control loop with an inner current loop is proposed and experimentally validated. Feed-forward currents are still utilised in the inner loop, but they are calculated using a new optimising algorithm which minimises the required compensating currents. Moreover, to the best of our knowledge, this is the first work where explicit algebraic equations to calculate these compensating currents are provided. Experimental results to validate the approach, obtained with an 18-cell hybrid MMC, are presented and discussed in the paper.es_ES
Patrocinadordc.description.sponsorshipCONICYT-PCHA/Doctorado Nacional/2016 21160931 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT PIA/BASAL FB0008 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 11190852 Fondect 1180879es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIEEEes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceIEEE Accesses_ES
Keywordsdc.subjectVoltage controles_ES
Keywordsdc.subjectCapacitorses_ES
Keywordsdc.subjectSwitcheses_ES
Keywordsdc.subjectModulationes_ES
Keywordsdc.subjectControl systemses_ES
Keywordsdc.subjectMathematical modeles_ES
Keywordsdc.subjectMultilevel converterses_ES
Keywordsdc.subjectModular multilevel converterses_ES
Keywordsdc.subjectHybrid MMCes_ES
Keywordsdc.subjectSub-module capacitor balancees_ES
Títulodc.titleExperimental validation of a nested control system to balance the cell capacitor voltages in hybrid MMCses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States