Show simple item record

Authordc.contributor.authorGonzález Inostroza, Pablo Ernesto
Authordc.contributor.authorRahmann Zúñiga, Claudia Andrea
Authordc.contributor.authorÁlvarez, Ricardo
Authordc.contributor.authorHaas, Jannik
Authordc.contributor.authorNowak, Wolfgang
Authordc.contributor.authorRehtanz, Christian
Admission datedc.date.accessioned2021-12-14T13:53:40Z
Available datedc.date.available2021-12-14T13:53:40Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationSustainability 2021, 13, 5656es_ES
Identifierdc.identifier.other10.3390/su13105656
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/183184
Abstractdc.description.abstractRenewable generation technologies are rapidly penetrating electrical power systems, which challenge frequency stability, especially in power systems with low inertia. To prevent future instabilities, this issue should already be addressed in the planning stage of the power systems. With this purpose, this paper presents a generation expansion planning tool that incorporates a set of frequency stability constraints along with the capability of renewable technologies and batteries to support system frequency stability during major power imbalances. We study how the investment decisions change depending on (i) which technology-batteries, renewable or conventional generation-support system frequency stability, (ii) the available levels of system inertia, and (iii) the modeling detail of reserve allocation (system-wide versus zone-specific). Our results for a case study of Chile's system in the year 2050 show that including fast frequency response from converter-based technologies will be mandatory to achieve a secure operation in power systems dominated by renewable generation. When batteries offer the service, the total investment sizes are only slightly impacted. More precise spatial modeling of the reserves primarily affects the location of the investments as well as the reserve provider. These findings are relevant to energy policy makers, energy planners, and energy companies.es_ES
Patrocinadordc.description.sponsorshipChilean National Research and Development Agency (ANID) ANID/Fondap/15110019 ANID/FONDECYT/11160228 ANID/FONDECYT/1201676 German Research Foundation (DFG) DFG-NO 805/11-1es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherMDPIes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceSustainabilityes_ES
Keywordsdc.subjectRenewable energieses_ES
Keywordsdc.subjectEnergy storage systemses_ES
Keywordsdc.subjectFrequency stabilityes_ES
Keywordsdc.subjectPower system planninges_ES
Títulodc.titleThe role of fast frequency response of energy storage systems and renewables for ensuring frequency stability in future low-inertia power systemses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States