Show simple item record

Authordc.contributor.authorSarica, Can
Authordc.contributor.authorIorio Morin, Christian
Authordc.contributor.authorAguirre Padilla, David Hernán
Authordc.contributor.authorNajjar, Ahmed
Authordc.contributor.authorPaff, Michelle
Authordc.contributor.authorFomenko, Anton
Authordc.contributor.authorYamamoto, Kazuaki
Authordc.contributor.authorZemmar, Ajmal
Authordc.contributor.authorLipsman, Nir
Authordc.contributor.authorIbrahim, George M.
Authordc.contributor.authorHamani, Clement
Authordc.contributor.authorHodaie, Mojgan
Authordc.contributor.authorLozano, Andrés M.
Authordc.contributor.authorMuñoz, Renato P.
Authordc.contributor.authorFasano, Alfonso
Authordc.contributor.authorKalia, Suneil K.
Admission datedc.date.accessioned2021-12-22T16:44:02Z
Available datedc.date.available2021-12-22T16:44:02Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationFrontiers in Human Neuroscience August 2021 Volume 15 Article 708481es_ES
Identifierdc.identifier.other10.3389/fnhum.2021.708481
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/183365
Abstractdc.description.abstractDeep brain stimulation (DBS) represents an important treatment modality for movement disorders and other circuitopathies. Despite their miniaturization and increasing sophistication, DBS systems share a common set of components of which the implantable pulse generator (IPG) is the core power supply and programmable element. Here we provide an overview of key hardware and software specifications of commercially available IPG systems such as rechargeability, MRI compatibility, electrode configuration, pulse delivery, IPG case architecture, and local field potential sensing. We present evidence-based approaches to mitigate hardware complications, of which infection represents the most important factor. Strategies correlating positively with decreased complications include antibiotic impregnation and co-administration and other surgical considerations during IPG implantation such as the use of tack-up sutures and smaller profile devices.Strategies aimed at maximizing battery longevity include patient-related elements such as reliability of IPG recharging or consistency of nightly device shutoff, and device-specific such as parameter delivery, choice of lead configuration, implantation location, and careful selection of electrode materials to minimize impedance mismatch. Finally, experimental DBS systems such as ultrasound, magnetoelectric nanoparticles, and near-infrared that use extracorporeal powered neuromodulation strategies are described as potential future directions for minimally invasive treatment.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherFrontiers Mediaes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceFrontiers in Human Neurosciencees_ES
Keywordsdc.subjectBattery lifees_ES
Keywordsdc.subjectNeuromodulationes_ES
Keywordsdc.subjectComplicationses_ES
Keywordsdc.subjectDBS (deep brain stimulation)es_ES
Keywordsdc.subjectIPG (implantable pulse generator)es_ES
Keywordsdc.subjectLongevityes_ES
Keywordsdc.subjectNon-invasivees_ES
Keywordsdc.subjectWireless charginges_ES
Títulodc.titleImplantable pulse generators for deep brain stimulation: challenges, complications, and strategies for practicality and longevityes_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States