Show simple item record

Authordc.contributor.authorGudenschwager Ruiz, Camila Andrea
Authordc.contributor.authorChávez, Isadora
Authordc.contributor.authorCárdenas, César
Authordc.contributor.authorGonzález Billault, Christian Enrique
Admission datedc.date.accessioned2022-03-22T12:57:37Z
Available datedc.date.available2022-03-22T12:57:37Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationOxidative Medicine and Cellular Longevity Volume 2021, Article ID 5586052, 14 pageses_ES
Identifierdc.identifier.other10.1155/2021/5586052
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/184316
Abstractdc.description.abstractBrain aging is characterized by several molecular and cellular changes grouped as the hallmarks or pillars of aging, including organelle dysfunction, metabolic and nutrition-sensor changes, stem cell attrition, and macromolecular damages. Separately and collectively, these features degrade the most critical neuronal function: transmission of information in the brain. It is widely accepted that aging is the leading risk factor contributing to the onset of the most prevalent pathological conditions that affect brain functions, such as Alzheimer’s, Parkinson’s, and Huntington’s disease. One of the limitations in understanding the molecular mechanisms involved in those diseases is the lack of an appropriate cellular model that recapitulates the “aged” context in human neurons. The advent of the cellular reprogramming of somatic cells, i.e., dermal fibroblasts, to obtain directly induced neurons (iNs) and induced pluripotent stem cell- (iPSC-) derived neurons is technical sound advances that could open the avenues to understand better the contribution of aging toward neurodegeneration. In this review, we will summarize the commonalities and singularities of these two approaches for the study of brain aging, with an emphasis on the role of mitochondrial dysfunction and redox biology. We will address the evidence showing that iNs retain age-related features in contrast to iPSC-derived neurons that lose the aging signatures during the reprogramming to pluripotency, rendering iNs a powerful strategy to deepen our knowledge of the processes driving normal cellular function decline and neurodegeneration in a human adult model. We will finally discuss the potential utilization of these novel technologies to understand the differential contribution of genetic and epigenetic factors toward neuronal aging, to identify and develop new drugs and therapeutic strategies.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherHindawies_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceOxidative Medicine and Cellular Longevityes_ES
Keywordsdc.subjectAlzheimers-diseasees_ES
Keywordsdc.subjectDirect conversiones_ES
Keywordsdc.subjectHuman fibroblastses_ES
Keywordsdc.subjectDna-damagees_ES
Keywordsdc.subjectBraines_ES
Keywordsdc.subjectCellses_ES
Keywordsdc.subjectMetformines_ES
Keywordsdc.subjectMetformines_ES
Keywordsdc.subjectDifferentiationes_ES
Keywordsdc.subjectHallmarkses_ES
Keywordsdc.subjectFissiones_ES
Títulodc.titleDirectly reprogrammed human neurons to understand age-related energy metabolism impairment and mitochondrial dysfunction in healthy aging and neurodegenerationes_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States