Show simple item record

Authordc.contributor.authorHerthum, Helge
Authordc.contributor.authorCarrillo Lincopí, Hugo Patricio Anner
Authordc.contributor.authorOsses Alvarado, Axel Esteban
Authordc.contributor.authorUribe, Sergio
Authordc.contributor.authorSacka, Ingolf
Authordc.contributor.authorBertoglio, Cristóbal
Admission datedc.date.accessioned2023-09-28T17:31:49Z
Available datedc.date.available2023-09-28T17:31:49Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationMedical Image Analysis 78 (2022) 102416es_ES
Identifierdc.identifier.other10.1016/j.media.2022.102416
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/195872
Abstractdc.description.abstractWhile MRI allows to encode the motion of tissue in the magnetization's phase, it remains yet a challenge to obtain high fidelity motion images due to wraps in the phase for high encoding efficiencies. Therefore, we propose an optimal multiple motion encoding method (OMME) and exemplify it in Magnetic Resonance Elastography (MRE) data. OMME is formulated as a non-convex least-squares problem for the motion using an arbitrary number of phase-contrast measurements with different motion encoding gradients (MEGs). The mathematical properties of OMME are proved in terms of standard deviation and dynamic range of the motion's estimate for arbitrary MEGs combination which are confirmed using synthetically generated data. OMME's performance is assessed on MRE data from in vivo human brain experiments and compared to dual encoding strategies. The unwrapped images are further used to reconstruct stiffness maps and compared to the ones obtained using conventional unwrapping methods. OMME allowed to successfully combine several MRE phase images with different MEGs, outperforming dual encoding strategies in either motion-to-noise ratio (MNR) or number of successfully reconstructed voxels with good noise stability. This lead to stiffness maps with greater resolution of details than obtained with conventional unwrapping methods. The proposed OMME method allows for a flexible and noise robust increase in the dynamic range and thus provides wrap-free phase images with high MNR. In MRE, the method may be especially suitable when high resolution images with high MNR are needed.es_ES
Patrocinadordc.description.sponsorshipGerman Research Foundation (DFG) GRK 2260 BIOQIC SFB1340 Sa901/17-2 European Union (EU) 668039 European Research Council (ERC) 852544 ANID-Fondecyt 1191903 1201311 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT PIA/BASAL ACE210010 Basal-ANID funds FB210005 Millennium Programs NCN17 1 NCN19 161 ACIPDE MATH190008 ANID Millennium Science Initiative Program NCN17129 Conicyt Basal Program AFB 1700 01 FONDAP/15110009 European Research Council (ERC) Spanish Government 852544es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceMedical Image Analysises_ES
Keywordsdc.subjectPhase-contrast MRIes_ES
Keywordsdc.subjectMultiple motion encodinges_ES
Keywordsdc.subjectMagnetic resonance elastographyes_ES
Títulodc.titleMultiple motion encoding in phase-contrast MRI: A general theory and application to elastography imaginges_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States