About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Postgrado
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Postgrado
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Conductance in Iiffusive Quasi-One-Dimensional Periodic Waveguides: A Semiclassical and Random Matrix Study

Tesis
Thumbnail
Open/Download
Iconcf-zuniga_jv.pdf (53.90Kb)
Access note
Autor no autoriza el acceso a texto completo de su documento.
Publication date
2011
Metadata
Show full item record
Cómo citar
Barra de la Guarda, Felipe
Cómo citar
Conductance in Iiffusive Quasi-One-Dimensional Periodic Waveguides: A Semiclassical and Random Matrix Study
.
Copiar
Cerrar

Author
  • Zúñiga Vukusich, Jaime Miguel;
Professor Advisor
  • Barra de la Guarda, Felipe;
Abstract
En esta tesis estudiamos propiedades de transporte cuántico en guías de onda finitas periódicas quasi-unidimensionales, cuya dinámica clásica asociada es difusiva. Nos enfocamos en el límite semiclásico el cual nos permite emplear un modelo de Teoria de Matrices Aleatorias (TMA) para describir el sistema. El requisito de difusión normal de la dinámica clásica restringe la configuración de la celda unitaria a tener horizonte finito, y significa que los ensembles apropi- ados de TMA son los ensembles circulares de Dyson. El sistema que consideramos corresponde a una configuración de scattering, compuesto de una cadena finita de L celdas unitarias (clási- camente caóticas y con horizonte finito) la cual esta conectada a dos guías planas semi-infinitas en sus extremos. Las partículas dentro de esta cavidad son libres y solo interactúan con los bordes a través de choques elásticos; esto significa que las ondas son descritas por una ecuación de Helmholtz con condiciones de borde tipo Dirichlet en las paredes la guía. Por lo tanto, no hay desorden en el sistema y el scattering es debido a la geometría de la cadena la cual es estática. El análogo al ensemble de desorden es un ensemble de energía, definido sobre un intervalo clási- camente pequeño pero cuyo ancho es varias veces un espaciamiento de niveles promedio (mean level spacing). El número de canales propagativos en las guías planas es N y el límite semiclásico se alcanza cuando N → ∞. Un número importante para las propiedades de transporte en cadenas periódicas es el número de modos de Bloch NB del sistema extendido infinito asociado. Previamente, ha sido conjeturado que en sistemas fuertemente difusivos en el límite semiclásico <NB>∼√(N D), donde D es la constante de difusión clásica. Hemos comprobado numéricamente este resultado en una guía de ondas con forma de coseno obteniendo excelente concordancia. Luego, mediante la aproximación de Machta-Zwanzig para D obtuvimos la expresión analítica <NB> N/π, la cual concuerda perfectamente con los ensembles circulares. Por otro lado, hemos estudiado la conductancia (adimensional) de Landauer g como función de L y N en la guía coseno y mediante nuestro modelo RMT para cadenas periódicas. Hemos encontrado que <g(L)> muestra dos regímenes. Primero, para cadenas de largo LN la dinámica es difusiva tal como en un cable desordenado en el régimen metálico, donde se observa el escalamiento ohmnico típico con <g(L)>= N/(L+1). En este régimen, la distribución de conductancias es Gaussiana con una varianza pequeña (tal que <1/g> ≈ 1/<g>) pero que crece linealmente con L. Luego, para sistemas más largos con L ≫ N , su naturaleza periódica se hace relevante y la conductancia alcanza un valor asintótico constante <g(L → ∞)> ∼ NB. En este caso, la distribución de la conductancia pierde su forma Gaussiana convirtiéndose en una distribución multimodal debido a los valores discretos (enteros) que NB puede tomar. La varianza alcanza un valor constante ∼√N cuando L → ∞. Comparando la conductancia para los ensembles circulares unitario y ortogonal, mostramos que un efecto de localización débil está presente en ambos regímenes. Finalmente, estudiamos la parte no propagativa de la conductancia en el régimen Bloch-balístico, la cual está dominada por el modo con la longitud de decaimiento mayor ℓ que va a cero como gnp = 4 e−2L/ℓ cuando L → ∞. Usando nuestro modelo de TMA obtuvimos que bajo un escalamiento apropiado la pdf P (ℓ) converge, cuando N → ∞, a una distribución límite con cola algebraica P(ℓ) ∼ℓ−3 para ℓ → ∞; esto nos permitió conjeturar el decaimiento <gnp> ∼ L−2, el cual fue observado en nuestra guía de ondas coseno.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/102515
Collections
  • Tesis Postgrado
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account