Show simple item record

Professor Advisordc.contributor.advisorLacourly Ventre, Nancy es_CL
Authordc.contributor.authorCourt Benvenuto, Sebastián Andrés es_CL
Staff editordc.contributor.editorFacultad de Ciencias Físicas y Matemáticases_CL
Staff editordc.contributor.editorDepartamento de Ingeniería Matemáticaes_CL
Associate professordc.contributor.otherAmaya Arriagada, Jorge 
Associate professordc.contributor.otherLarraín García, Manuel
Admission datedc.date.accessioned2012-09-12T18:17:29Z
Available datedc.date.available2012-09-12T18:17:29Z
Publication datedc.date.issued2008es_CL
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/103288
Abstractdc.description.abstractEl objetivo general del presente trabajo es modelar, explicar y predecir el nivel de caudal de las cuencas de Betania y Bío-Bío, ubicadas en Colombia y Chile respectivamente, con el objeto de mejorar la comprensión del fenómeno y la planificación energética por parte de la empresa ENDESA Chile. ENDESA Chile posee un área de profesionales que dedica parte de su trabajo a modelar y pronosticar los caudales de, entre otras, las cuencas antes mencionadas. Si bien los resultados de dichas predicciones no son insuficientes, se desea mejorar de forma importante la precisión de las mismas; llegando, en lo posible, a un error cercano al 20%. A partir de la información histórica proporcionada por la empresa y de otras fuentes meteorológicas especializadas, se determinaron modelos de dos tipos. En primer lugar, los modelos de series de tiempo usuales, con pequeñas modificaciones, para llevarlos a los conocidos como modelos PAR y PARX. En segundo lugar, se intentó utilizar modelos no lineales de redes neuronales artificiales para explorar las posibles no linealidades que pudiese poseer el problema. Finalmente, se clasificaron los caudales en tres niveles, a modo de resumir la información presentada por los modelos. Para la creación, estimación y calibración de los modelos se utilizaron diversas técnicas estadísticas. Entre ellas destacan el análisis de componentes principales para reducir la dimensionalidad de variables climáticas, el test de normalidad de Shapiro-Wilks y técnicas de calibración y validación de modelos, entre otras. El resultado al comparar los dos tipos de modelos arrojó que, si bien los modelos de redes neuronales entregan mejores resultados en muchas ocasiones, la poca simplicidad y capacidad de explicación que poseen indican que es mejor la alternativa lineal, es decir, los modelos PAR/PARX de series de tiempo. Se concluye que es posible disminuir el error bajo el 20% utilizando técnicas estadísticas de estructura sencilla que permitan explicar y comprender la forma del fenómeno. Se recomienda finalmente, que la empresa ENDESA elija algunas de las alternativas de modelos planteados de acuerdo a sus intereses, es decir, menor error o mayor comprensión.
Lenguagedc.language.isoeses_CL
Publisherdc.publisherUniversidad de Chilees_CL
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Keywordsdc.subjectMatemáticaes_CL
Keywordsdc.subjectHidrologíaes_CL
Keywordsdc.subjectRedes neuronales artificialeses_CL
Keywordsdc.subjectSeries de tiempoes_CL
Keywordsdc.subjectEstadísticaes_CL
Keywordsdc.subjectFenómeno del niñoes_CL
Títulodc.titlePronóstico de Caudales de las Cuencas de Betania y Bío-Bío Utilizando Métodos Estadísticoses_CL
Document typedc.typeTesis


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile