About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Pregrado
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Pregrado
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Aplicación de Tecnologías de Robustez en Reconocimiento de Voz a la Enseñanza de Segundo Idioma

Tesis
Thumbnail
Open/Download
Iconravest_p.pdf (1.652Mb)
Publication date
2009
Metadata
Show full item record
Cómo citar
Becerra Yoma, Néstor
Cómo citar
Aplicación de Tecnologías de Robustez en Reconocimiento de Voz a la Enseñanza de Segundo Idioma
.
Copiar
Cerrar

Author
  • Ravest Catalán, Pablo Andrés;
Professor Advisor
  • Becerra Yoma, Néstor;
Abstract
El objetivo principal de esta memoria es mejorar el rendimiento de un sistema de evaluación de pronunciación automático basado en ASR (Automatic Speech Recognition) frente a cambios de locutor. Para lograr esto se propone la implementación de dos técnicas de robustez existentes en la literatura especializada: MLLR (Maximum Likelihood Linear Regression), que realiza una transformación lineal de los parámetros del modelo acústico para adaptarlo a un locutor específico; y VTLN (Vocal Tract Length Normalization), que normaliza el banco de filtros de Mel utilizado en la parametrización de las señales para compensar por diferencias en el tracto vocal de los locutores. Estos métodos se aplican de forma no supervisada y considerando una cantidad de información de adaptación limitada, debido a las exigencias que presentan los sistemas de CAPT (Computer Aided Pronunciation Training). Este documento presenta experimentos con estas técnicas en ASR y CAPT considerando señales de locutores con distinto manejo del inglés y bajo variadas condiciones de ruido. En ASR se obtienen disminuciones del WER (Word Error Rate) de hasta un 30,56 % con MLLR de 25 señales y 16,23 % con VTLN de 1 señal. Los métodos muestran ser eficaces incluso al considerar pocas señales de adaptación, obteniéndose mejoras promedio del WER de 19,4 % y 6,34 % en MLLR con 5 señales y VTLN con 1 señal respectivamente. En evaluación de pronunciación, VTLN produce mejoras promedio del coeficiente de correlación entre los resultados entregados por el sistema y la evaluación esperada de 3,1 % y 5,01 % para dos bases de datos probadas. MLLR fue incapaz de aumentar la correlación debido a problemas con el modelo competitivo del CAPT y al modo de aplicación no supervisado.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/103402
Collections
  • Tesis Pregrado
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account