About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Postgrado
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Postgrado
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Aplicación de la técnica PSO a la determinación de funciones de Lyapunov cuadráticas comunes y a sistemas adaptables basados en modelos de error

Tesis
Thumbnail
Open/Download
Iconcf-ordonez_rh.pdf (2.054Mb)
Publication date
2012
Metadata
Show full item record
Cómo citar
Duarte Mermoud, Manuel
Cómo citar
Aplicación de la técnica PSO a la determinación de funciones de Lyapunov cuadráticas comunes y a sistemas adaptables basados en modelos de error
.
Copiar
Cerrar

Author
  • Ordóñez Hurtado, Rodrigo;
Professor Advisor
  • Duarte Mermoud, Manuel;
Abstract
La presente Tesis Doctoral explora el problema de la determinación de funciones de Lyapunov cuadráticas comunes (CQLF, por su sigla en inglés), en el marco de los sistemas conmutados, y el problema de la identificación en línea y control adaptable, en el marco de los sistemas adaptables basados en modelos de error. Ambos en el área de los sistemas dinámicos lineales y no lineales, y son resueltos aquí bajo el enfoque de la optimización basada en una herramienta llamada Optimización por Enjambre de Partículas (PSO, por su sigla en inglés). Los problemas anteriormente mencionados son de gran importancia y trascendencia en la actualidad, pues el primero entrega los elementos para la determinación de la estabilidad de sistemas lineales conmutados, y el segundo se relaciona con el control de plantas de parámetros desconocidos. Estos dos problemas poseen soluciones parciales, tanto desde el punto de vista de la optimización como de otros enfoques. Sin embargo, las soluciones existentes poseen beneficios demostrados, pero también limitaciones marcadas, que los siguen justificando como problemas abiertos. En cuanto al problema de la determinación de CQLFs, en la presente Tesis Doctoral se desarrollan dos nuevas metodologías: i) una metodología basada en PSO para la determinación de la no-existencia de una CQLF, y ii) una metodología basada en PSO para el cálculo de una CQLF. Ambas metodologías presentan evidentes mejoras comparativas respecto de las mejores soluciones actuales, con base en indicadores de desempeño objetivos. En el ámbito de los sistemas adaptables, el principal producto de la presente Tesis Doctoral es una metodología basada en PSO para el diseño de leyes de ajuste paramétrico en sistemas adaptables de tiempo discreto, representados por modelos de error. Desde este punto de vista, la investigación se centra en las propiedades de estabilidad que presenta el uso de PSO en sistemas adaptables, además de estudiar las ventajas comparativas respecto de técnicas tradicionalmente usadas como gradiente y mínimos cuadrados.
General note
Doctor en Ingeniería Eléctrica
Identifier
URI: https://repositorio.uchile.cl/handle/2250/111299
Collections
  • Tesis Postgrado
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account