About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Postgrado
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Postgrado
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Modelo preventivo de morosidad temprana de clientes HFC mediante clasificación bayesiana

Tesis
Thumbnail
Open/Download
Iconcf-bruna_ep.pdf (2.734Mb)
Publication date
2012
Metadata
Show full item record
Cómo citar
Weber Haas, Richard
Cómo citar
Modelo preventivo de morosidad temprana de clientes HFC mediante clasificación bayesiana
.
Copiar
Cerrar

Author
  • Bruna Paez, Eduardo Andrés;
Professor Advisor
  • Weber Haas, Richard;
Abstract
Este proyecto, formó parte del plan de mitigación de clientes morosos implementado por una empresa de telecomunicaciones en el año 2009, dónde una de las líneas de acción estaba enfocada en disminuir la morosidad de los nuevos clientes en su primera factura. Se propuso un modelo que clasifique a los nuevos clientes en pagadores y no pagadores, permitiendo con ello, reorientar recursos y realizar acciones preventivas de morosidad de manera más focalizada y efectiva, las cuales estaban siendo hasta ese momento aplicadas al universo total de nuevos clientes. El éxito de este proyecto requería el compromiso del área de cobranzas, usuaria del modelo, por esto, la elección del modelo consideró aspectos tanto teóricos como prácticos. La simpleza y la fácil ejecución del modelo, idealmente programable, eran variables deseables y decidoras del éxito de éste. Se ejecutó basado en Clasificación Bayesiana por su forma simple de utilizar y presentar una confiabilidad aceptable [17]. Los métodos de inducción bayesiana han demostrado ser una clase de algoritmos tan competitivos como los métodos árboles de decisión y redes neuronales [29], que permiten implementar algoritmos en Wolfram Mathematica 6.0 cuyas sentencias de programación son muy similares al lenguaje C++, permitiendo su programación posterior. El modelo se confeccionó con 42.087 clientes, contratantes entre el 15 de julio y el 15 de octubre del 2009, de estos, 40.087 formaron la base de aprendizaje para calibrar y realizar los cálculos de probabilidades, y 2.000 como base de testing. Los clientes a clasificar en pagadores y no pagadores correspondieron a 9.328, quienes ingresaron a la empresa entre el 16 de Octubre y el 15 de Noviembre del 2009. En base a establecer una probabilidad a priori, se plantea en valores estimados de corte probabilístico basado en la experiencia o un método de clasificación [19], por una probabilidad de corte de 0,4 para clasificar a un cliente pagador por la necesidad que enfrenta la empresa de mejorar el % de clientes morosos en su primera boleta y a la vez reducir los costos actuales involucrados en la cobranza. El modelo clasificó a 2.910 clientes como no pagadores, 2.179 de ellos efectivamente no cancelaron su boleta al vencimiento (75%). Este resultado es compatible con el esperado en el análisis teórico, debido a la eficiencia de los estimadores estimados, como también, el tamaño de los set de datos empleados que en forma teórica respalda los resultados obtenidos con un 80% de confiabilidad. Como trabajo futuro, resulta interesante evaluar el aporte del modelo en la reducción real del porcentaje de clientes morosos al permitir reorientar recursos y focalizarse en ciertos clientes, como a su vez, actualizar la base de aprendizaje de tal forma ir considerando la actualidad al modelo.
General note
Magíster en Gestión de Operaciones
Identifier
URI: https://repositorio.uchile.cl/handle/2250/112522
Collections
  • Tesis Postgrado
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account