About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Postgrado
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Postgrado
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Diseño, desarrollo y evaluación de un algoritmo para detectar sub-comunidades traslapadas usando análisis de redes sociales y minería de datos

Tesis
Thumbnail
Open/Download
Iconcf-munoz_rc.pdf (3.248Mb)
Publication date
2013
Metadata
Show full item record
Cómo citar
Ríos Pérez, Sebastián
Cómo citar
Diseño, desarrollo y evaluación de un algoritmo para detectar sub-comunidades traslapadas usando análisis de redes sociales y minería de datos
.
Copiar
Cerrar

Author
  • Muñoz Cancino, Ricardo Luis;
Professor Advisor
  • Ríos Pérez, Sebastián;
Abstract
Los sitios de redes sociales virtuales han tenido un enorme crecimiento en la última década. Su principal objetivo es facilitar la creación de vínculos entre personas que, por ejemplo, comparten intereses, actividades, conocimientos, o conexiones en la vida real. La interacción entre los usuarios genera una comunidad en la red social. Existen varios tipos de comunidades, se distinguen las comunidades de interés y práctica. Una comunidad de interés es un grupo de personas interesadas en compartir y discutir un tema de interés particular. En cambio, en una comunidad de práctica las personas comparten una preocupación o pasión por algo que ellos hacen y aprenden cómo hacerlo mejor. Si las interacciones se realizan por internet, se les llama comunidades virtuales (VCoP/VCoI por sus siglas en inglés). Es común que los miembros compartan solo con algunos usuarios formando así subcomunidades, pudiendo pertenecer a más de una. Identificar estas subestructuras es necesario, pues allí se generan las interacciones para la creación y desarrollo del conocimiento de la comunidad. Se han diseñado muchos algoritmos para detectar subcomunidades. Sin embargo, la mayoría de ellos detecta subcomunidades disjuntas y además, no consideran el contenido generado por los miembros de la comunidad. El objetivo principal de este trabajo es diseñar, desarrollar y evaluar un algoritmo para detectar subcomunidades traslapadas mediante el uso de análisis de redes sociales (SNA) y Text Mining. Para ello se utiliza la metodología SNA-KDD propuesta por Ríos et al. [79] que combina Knowledge Discovery in Databases (KDD) y SNA. Ésta fue aplicada sobre dos comunidades virtuales, Plexilandia (VCoP) y The Dark Web Portal (VCoI). En la etapa de KDD se efectuó el preprocesamiento de los posts de los usuarios, para luego aplicar Latent Dirichlet Allocation (LDA), que permite describir cada post en términos de tópicos. En la etapa SNA se construyeron redes filtradas con la información obtenida en la etapa anterior. A continuación se utilizaron dos algoritmos desarrollados en esta tesis, SLTA y TPA, para encontrar subcomunidades traslapadas. Los resultados muestran que SLTA logra un desempeño, en promedio, un 5% superior que el mejor algoritmo existente cuando es aplicado sobre una VCoP. Además, se encontró que la calidad de la estructura de sub-comunidades detectadas aumenta, en promedio, un 64% cuando el filtro semántico es aumentado. Con respecto a TPA, este algoritmo logra, en promedio, una medida de modularidad de 0.33 mientras que el mejor algoritmo existente 0.043 cuando es aplicado sobre una VCoI. Además la aplicación conjunta de nuestros algoritmos parece mostrar una forma de determinar el tipo de comunidad que se está analizando. Sin embargo, esto debe ser comprobado analizando más comunidades virtuales.
General note
Magíster en Gestión de Operaciones
 
Ingeniero Civil Industrial
 
Identifier
URI: https://repositorio.uchile.cl/handle/2250/112582
Collections
  • Tesis Postgrado
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account