Positive radial solutions to a 'semilinear' equation involving the Pucci's operator
Author | dc.contributor.author | Felmer Aichele, Patricio | es_CL |
Author | dc.contributor.author | Quaas, Alexander | |
Admission date | dc.date.accessioned | 2007-04-18T19:12:52Z | |
Available date | dc.date.available | 2007-04-18T19:12:52Z | |
Publication date | dc.date.issued | 2004-05-20 | |
Cita de ítem | dc.identifier.citation | JOURNAL OF DIFFERENTIAL EQUATIONS 199 (2): 376-393 MAY 20 2004 | en |
Identifier | dc.identifier.issn | 0022-0396 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124516 | |
Abstract | dc.description.abstract | In this article we prove existence of positive radially symmetric solutions for the nonlinear elliptic equation M-lambda,Delta(+)(D(2)u) - gammau + f(u) = 0 in B-R, u = 0 on partial derivativeB(R), where M-lambda,Delta(+) denotes the Pucci's extremal operator with parameters 0<lambdaless than or equal toLambda and B-R is the ball of radius R in R-N, Ngreater than or equal to3. The result applies to a wide class of nonlinear functions f, including the important model cases: (i) gamma = 1 and f(s) = s(p), 1<p<p(*)(+). (ii) gamma = 0, f (s) = alphas +s(p), 1<p<p(*)(+) and 0less than or equal toalpha<mu(1)(+). Here p(*)(+) is critical exponent for M-lambda,Lambda(+) and mu(1)(+) is the first eigenvalue of M-lambda,Lambda(+) in B-R. Analogous results are obtained for the operator M-lambda,Lambda(-). | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | en |
Keywords | dc.subject | LINEAR ELLIPTIC-EQUATIONS | en |
Título | dc.title | Positive radial solutions to a 'semilinear' equation involving the Pucci's operator | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas