Show simple item record

Authordc.contributor.authorLacassie Reyes, Juan Pablo 
Authordc.contributor.authorRoser, Barry es_CL
Authordc.contributor.authorRuiz del Solar, Javier es_CL
Authordc.contributor.authorHervé Allamand, Francisco es_CL
Admission datedc.date.accessioned2007-04-18T21:02:37Z
Available datedc.date.available2007-04-18T21:02:37Z
Publication datedc.date.issued2004-03-01
Cita de ítemdc.identifier.citationSEDIMENTARY GEOLOGY 165 (1-2): 175-191 MAR 1 2004en
Identifierdc.identifier.issn0037-0738
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124524
Abstractdc.description.abstractAn unsupervised neural network technique, Growing Cell Structures (GCS), was used to visualize geochemical differences between sandstones of four different sedimentary provenance groups: P1 (mafic), P2 (intermediate), P3 (felsic), and P4 (recycled). Multidimensional data of four sandstone data sets comprising major elements, log-normalized major elements, trace elements, and high field strength elements (HFSE) were projected into colored two-dimensional maps that can be visually and quantitatively interpreted. The cluster structure and variable distributions produced show that each sedimentary provenance group can be distinguished in the neural maps according to a unique combination of major or trace element concentrations. In these terms, the distinguishing features of each provenance group are: P1-high Fe(2)O(3)t, TiO2, MgO, MnO, CaO, P2O5, Sc, V, Cr, and Cu; P2-intermediate Fe(2)O(3)t, TiO2, MgO, MnO, CaO, Sc, V, and Cu; P3-intermediate to high K2O, intermediate SiO2 and Al2O3, low Fe(2)O(3)t and TiO2, and intermediate to low Nb, Rb, and Th; P4-high SiO2, Y, Nb, Rb, Th, Ba, and Zr, coupled with low Al2O3, CaO, Na2O, Fe(2)O(3)t, MgO, MnO, and TiO2. The elemental associations in P1, P2, and P3 reflect petrogenetic evolution of first-cycle sources, whereas the associations in P4 are compatible with the combined effects of recycling, weathering, and heavy mineral concentration.en
Lenguagedc.language.isoenen
Publisherdc.publisherELSEVIERen
Keywordsdc.subjectNEW-ZEALANDen
Títulodc.titleDiscovering geochemical patterns using self-organizing neural networks: a new perspective for sedimentary provenance analysisen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record