About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Finding submasses in weighted strings with Fast Fourier Transform

Artículo
Thumbnail
Open/Download
file_5624.txt (0bytes)
Publication date
2007
Metadata
Show full item record
Cómo citar
Bansal, Nikhil
Cómo citar
Finding submasses in weighted strings with Fast Fourier Transform
.
Copiar
Cerrar

Author
  • Bansal, Nikhil;
  • Cieliebak, Mark;
  • Liptak, Zsuzsanna;
Abstract
We study the Submass Finding Problem: given a string s over a weighted alphabet, i.e., an alphabet Sigma with a weight function mu : Sigma -> N, we refer to a mass M is an element of N as a submass of s if s has a substring whose weights sum up to M. Now, for a set of input masses {M-l, ..., M-k}, we want to find those M-i which are submasses of s, and return one or all occurrences of substrings with mass Mi. We present efficient algorithms for both the decision and the search problem. Furthermore, our approach allows us to compute efficiently the number of different submasses of s. The main idea of our algorithms is to define appropriate polynomials such that we can determine the solution for the Submass Finding Problem from the coefficients of the product of these polynomials. We obtain very efficient running times by using Fast Fourier Transform to compute this product. Our main algorithm for the decision problem runs in time O(mu(s) log mu(s)), where mu(s) is the total mass of string s. Employing methods for compressing sparse polynomials, this runtime can be viewed as O(sigma(s) log(2) sigma(s)). where sigma(s) denotes the number of different submasses of s. In this case, the runtime is independent of the size of the individual masses of characters. (c) 2006 Elsevier B.V. All rights reserved.
General note
Publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/124669
Quote Item
DISCRETE APPLIED MATHEMATICS Vol. 155 APR 1 2007 06/07/2008 707-718
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account