About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Improvement of the thermal stability of hydrous zirconia by post-synthesis treatment with NaOH and NH4OH solutions

Artículo
Thumbnail
Open/Download
IconAguila_G.pdf (455.1Kb)
Publication date
2006-05-24
Metadata
Show full item record
Cómo citar
Aguila, Gonzalo
Cómo citar
Improvement of the thermal stability of hydrous zirconia by post-synthesis treatment with NaOH and NH4OH solutions
.
Copiar
Cerrar

Author
  • Aguila, Gonzalo;
  • Guerrero, Sichem;
  • Gracia, F. J.;
  • Araya, P.;
Abstract
The structural stability of a commercial hydrous zirconia and a hydrous zirconia synthesized in our laboratory by the sol-gel method has been improved by a post-synthesis reflux treatment with aqueous NH4OH and NaOH solutions (100 degrees C for 9 h). Direct calcination of both materials at 700 degrees C for 3 h, rendered zirconium oxides with a mixture of monoclinic and tetragonal structures and specific areas of 36 and 27 m(2)/g, respectively. In contrast, if the materials were refluxed before calcination with NaOH or NH4OH solutions, zirconium oxides with tetragonal structure and specific areas between 90 and 200 m(2)/g were obtained after calcination at 700 degrees C. In the treatments with NaOH solution, addition of Si coming from dissolution of the flask glass walls or from an external Si source in a plastic flask is responsible for the stability of the final zirconium oxides. Nevertheless, the porous structure of these materials is determined by the treatment conditions in basic solution, thus allowing to control the physical properties of the final oxide. Short treatment times are sufficient to stabilize the hydrous zirconia. On the contrary, if the reflux is made with a NH4OH solution, the stabilization mechanism appears to be different since there is no evidence of Si addition in the oxides. In this case, the pore size distribution strongly depends on the reflux time, and the highest specific area is obtained for the largest treatment time (9 h).
Patrocinador
This work was financed by FONDAP project 11980002.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/124736
ISSN: 0926-860X
Quote Item
APPLIED CATALYSIS A-GENERAL Volume: 305 Issue: 2 Pages: 219-232 Published: MAY 24 2006
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account