About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems

Artículo
Thumbnail
Open/Download
IconDolbeault_J.pdf (859.3Kb)
Publication date
2006-09-01
Metadata
Show full item record
Cómo citar
Dolbeault, Jean
Cómo citar
Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems
.
Copiar
Cerrar

Author
  • Dolbeault, Jean;
  • Felmer Aichele, Patricio;
  • Loss, M.;
  • Paturel, E.;
Abstract
This paper is devoted to inequalities of Lieb-Thirring type. Let V be a nonnegative potential such that the corresponding Schrodinger operator has an unbounded sequence of eigenvalues (lambda(i) (V))(i is an element of N*). We prove that there exists a positive constant C(gamma), such that, if gamma > d/2, then Sigma(i is an element of N*) [lambda(i)(V)](-gamma) <= C(gamma) integral(Rd) Vd/2-gamma dx (*) and determine the optimal value of C(gamma). Such an inequality is interesting for studying the stability of mixed states with occupation numbers. We show how the infimum of. lambda(1)(V)(gamma) . integral(Rd) Vd/2 -gamma dx on all possible potentials V, which is a lower bound for [C(gamma)](-1), corresponds to the optimal constant of a subfamily of Gagliardo-Nirenberg inequalities. This explains how (*) is related to the usual Lieb-Thirring inequality and why all Lieb-Thirring type inequalities can be seen as generalizations of the Gagliardo-Nirenberg inequalities for systems of functions with occupation numbers taken into account. We also state a more general inequality of Lieb-Thirring type Sigma(i is an element of N*) F(lambda(i)(V)) = Tr[F(-Delta + V)] <= integral(Rd) G(V(x)) dx, (**) where F and G are appropriately related. As a special case corresponding to F(s) = e(-s), (**) is equivalent to an optimal Euclidean logarithmic Sobolev inequality integral(Rd) rho log rho dx + d/2 log(4 pi) integral(Rd) rho dx <= Sigma(i is an element of N*) nu(i) log nu(i) + Sigma(i is an element of N*) nu(i) integral(Rd) \del psi(i)\(2) dx, where rho = Sigma(i is an element of N*) nu(i)\psi(i)\(2), (nu(i))(i is an element of N*) is any nonnegative sequence of occupation numbers and (psi(i))(i is an element of N*) is any sequence of orthonormal L-2 (R-d) functions.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/124830
ISSN: 0022-1236
Quote Item
JOURNAL OF FUNCTIONAL ANALYSIS Volume: 238 Issue: 1 Pages: 193-220 Published: SEP 1 2006
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account