Loops and branches of coexistence states in a Lotka-Volterra competition model
Artículo
Open/ Download
Publication date
2006-11-15Metadata
Show full item record
Cómo citar
Lou, Yuan
Cómo citar
Loops and branches of coexistence states in a Lotka-Volterra competition model
Author
Abstract
A two-species Lotka-Volterra competition-diffusion model with spatially inhomogeneous reaction tenns is investigated. The two species are assumed to be identical except for their interspecific competition coefficients. Viewing their common diffusion rate mu as a parameter, we describe the bifurcation diagram of the steady states, including stability, in terms of two real functions of mu. We also show that the bifurcation diagram can be rather complicated. Namely, given any two positive integers l and b, the interspecific competition coefficients can be chosen such that there exist at least l bifurcating branches of positive stable steady states which connect two semi-trivial steady states of the same type (they vanish at the same component), and at least b other bifurcating branches of positive stable steady states that connect semi-trivial steady states of different types.
Quote Item
JOURNAL OF DIFFERENTIAL EQUATIONS Volume: 230 Issue: 2 Pages: 720-742 Published: NOV 15 2006
Collections