Author | dc.contributor.author | Maass Sepúlveda, Alejandro | |
Author | dc.contributor.author | Martínez Aguilera, Servet | es_CL |
Author | dc.contributor.author | Marcus, Pivato | es_CL |
Author | dc.contributor.author | Yassawi, Reem | es_CL |
Admission date | dc.date.accessioned | 2009-04-16T17:27:39Z | |
Available date | dc.date.available | 2009-04-16T17:27:39Z | |
Publication date | dc.date.issued | 2006-08 | |
Cita de ítem | dc.identifier.citation | ERGODIC THEORY AND DYNAMICAL SYSTEMS Volume: 26 Pages: 1203-1224 Part: Part 4 Published: AUG 2006 | en |
Identifier | dc.identifier.issn | 0143-3857 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124913 | |
Abstract | dc.description.abstract | Let M = N-D be the positive orthant of a D-dimensional lattice and let (G, +) be a finite abelian group. Let G subset of G(M) be a subgroup shift, and let mu be a Markov random field whose support is G. Let Phi : G -> G be a linear cellular automaton. Under broad conditions on G, we show that the Cesaro average N-1 Sigma(N-1)(n=0) Phi(n)(mu) converges to a measure of maximal entropy for the shift action on G. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | CAMBRIDGE UNIV PRESS | en |
Keywords | dc.subject | LIMIT MEASURES | en |
Título | dc.title | Asymptotic randomization of subgroup shifts by linear cellular automata | en |
Document type | dc.type | Artículo de revista | |