Asymptotic randomization of subgroup shifts by linear cellular automata
Artículo

Open/ Download
Publication date
2006-08Metadata
Show full item record
Cómo citar
Maass Sepúlveda, Alejandro
Cómo citar
Asymptotic randomization of subgroup shifts by linear cellular automata
Abstract
Let M = N-D be the positive orthant of a D-dimensional lattice and let (G, +) be a finite abelian group. Let G subset of G(M) be a subgroup shift, and let mu be a Markov random field whose support is G. Let Phi : G -> G be a linear cellular automaton. Under broad conditions on G, we show that the Cesaro average N-1 Sigma(N-1)(n=0) Phi(n)(mu) converges to a measure of maximal entropy for the shift action on G.
Quote Item
ERGODIC THEORY AND DYNAMICAL SYSTEMS Volume: 26 Pages: 1203-1224 Part: Part 4 Published: AUG 2006
Collections