About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Vertex partitions and maximum degenerate subgraphs

Artículo
Thumbnail
Open/Download
IconMatamala_Martin.pdf (87.74Kb)
Publication date
2007-07
Metadata
Show full item record
Cómo citar
Matamala Vásquez, Martín
Cómo citar
Vertex partitions and maximum degenerate subgraphs
.
Copiar
Cerrar

Author
  • Matamala Vásquez, Martín;
Abstract
Let G be a graph with maximum degree d ≥ 3 and ω(G) ≤ d, where ω(G) is the clique number of the graph G. Let p1 and p2 be two positive integers such that d = p1 + p2. In this work, we prove that G has a vertex partition {S1, S2} such that G[S1] is a maximum order (p1 − 1)- degenerate subgraph of G and G[S2] is a (p2 − 1)-degenerate subgraph, where G[Si] denotes the graph induced by the set Si in G, for i = 1,2. On one hand, by using a degree-equilibrating process our result implies a result of Bollobas and Marvel [1]: for every graph G of maximum degree d ≥ 3 and ω(G) ≤ d, and for every p1 and p2 positive integers such that d = p1 + p2, the graphG has a partition {S1, S2} such that for i = 1, 2,#2;(G[Si ]) ≤ pi and G[Si ] is (pi − 1)-degenerate. On the other hand, our result refines the following result of Catlin in [2]: every graph G of maximum degree d ≥ 3 has a partition {S1, S2} such that S1 is a maximum independent set and ω(G[S2]) ≤ d − 1; it also refines a result of Catlin and Lai [3]: every graph G of maximum degree d ≥ 3 has a partition {S1, S2} such that S1 is a maximum size set with G[S1] acyclic and ω(G[S2]) ≤ d − 2. The cases d = 3, (d, p1) = (4, 1) and (d, p1) = (4, 2) were proved by Catlin and Lai [3].
Patrocinador
Contract grant sponsor: Iniciativa Científica Milenio; Contract grant numbers: ICM P01-005; Contract grant sponsor: Fondecyt; Contract grant number: 1050638.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/124952
ISSN: 0364-9024
Quote Item
JOURNAL OF GRAPH THEORY, v.: 55, issue: 3, p.: 227-232, JUL, 2007
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account