Show simple item record

Authordc.contributor.authorÁlvarez Daziano, Felipe 
Authordc.contributor.authorFlores, Salvador es_CL
Admission datedc.date.accessioned2010-01-06T14:18:23Z
Available datedc.date.available2010-01-06T14:18:23Z
Publication datedc.date.issued2008
Cita de ítemdc.identifier.citationJOURNAL OF CONVEX ANALYSIS Volume: 15 Issue: 2 Pages: 349-363 Published: 2008en_US
Identifierdc.identifier.issn0944-6532
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125040
Abstractdc.description.abstractIn this paper we examine the problem of finding a Lipschitz function on an open domain with prescribed boundary values and whose gradient is required to satisfy some nonhomogeneous pointwise constraints a.e. in the domain. These constraints are supposed to be given by a measurable set-valued mapping with convex, uniformly compact and nonempty-interior values. We discuss existence and metric properties of maximal solutions of such a problem. We exploit some connections with weak solutions to discontinuous Hamilton-Jacobi equations, and we provide a variational principle that characterizes maximal solutions. We investigate the case where the original problem is supplemented with bilateral obstacle constraints on the function values. Finally, as an application of these results, we prove existence for a specific class of nonconvex problems from the calculus of variations, with and without obstacle constraints, under mild regularity hypotheses on the data.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherHELDERMANN VERLAGen_US
Keywordsdc.subjectHAMILTON-JACOBI EQUATIONSen_US
Títulodc.titleRemarks on lipschitz solutions to measurable differential inclusions and an existence result for some nonconvex variational problemsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record