About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Remarks on lipschitz solutions to measurable differential inclusions and an existence result for some nonconvex variational problems

Artículo
Thumbnail
Open/Download
IconALVAREZ_FEL.pdf (287.4Kb)
Publication date
2008
Metadata
Show full item record
Cómo citar
Álvarez Daziano, Felipe
Cómo citar
Remarks on lipschitz solutions to measurable differential inclusions and an existence result for some nonconvex variational problems
.
Copiar
Cerrar

Author
  • Álvarez Daziano, Felipe;
  • Flores, Salvador;
Abstract
In this paper we examine the problem of finding a Lipschitz function on an open domain with prescribed boundary values and whose gradient is required to satisfy some nonhomogeneous pointwise constraints a.e. in the domain. These constraints are supposed to be given by a measurable set-valued mapping with convex, uniformly compact and nonempty-interior values. We discuss existence and metric properties of maximal solutions of such a problem. We exploit some connections with weak solutions to discontinuous Hamilton-Jacobi equations, and we provide a variational principle that characterizes maximal solutions. We investigate the case where the original problem is supplemented with bilateral obstacle constraints on the function values. Finally, as an application of these results, we prove existence for a specific class of nonconvex problems from the calculus of variations, with and without obstacle constraints, under mild regularity hypotheses on the data.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125040
ISSN: 0944-6532
Quote Item
JOURNAL OF CONVEX ANALYSIS Volume: 15 Issue: 2 Pages: 349-363 Published: 2008
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account