Asymptotics at infinity of solutions for p-Laplace equations in exterior domains
Author | dc.contributor.author | Avila, Andrés I. | |
Author | dc.contributor.author | Brock, Friedemann | es_CL |
Admission date | dc.date.accessioned | 2010-01-07T12:53:26Z | |
Available date | dc.date.available | 2010-01-07T12:53:26Z | |
Publication date | dc.date.issued | 2008-09-01 | |
Cita de ítem | dc.identifier.citation | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS Volume: 69 Issue: 5-6 Pages: 1615-1628 Published: SEP 1 2008 | en_US |
Identifier | dc.identifier.issn | 0362-546X | |
Identifier | dc.identifier.other | 10.1016/j.na.2007.07.003 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125052 | |
Abstract | dc.description.abstract | Let 1 < p < N, and u be a nonnegative solution of -Delta(p)u = f (x, u) on R-N\(B-1) over bar where f behaves like \x\(-l)u(q) near \x\ = infinity and u = 0, for some constants q >= 0 and l is an element of R. We obtain asymptotic decay estimates for u. In particular, our results complete the 'sublinear case' q < p - 1. A related analysis is carried out for systems like -Delta(p)u = f(x, v), -Delta(p)v = g(x, u), where p = 2 corresponds to a Hamiltonian system. In this way we extend and improve some known results of Mitidieri and Pohozaev, Bidaut-Veron and Pohozaev, and other authors. Our proofs use tools such as Harnack inequality, the Maximum Principle, Liouville Theorems and blow-up arguments. | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | en_US |
Keywords | dc.subject | LINEAR ELLIPTIC-EQUATIONS | en_US |
Título | dc.title | Asymptotics at infinity of solutions for p-Laplace equations in exterior domains | en_US |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas