About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Travelling fronts in stochastic Stokes' drifts

Artículo
Thumbnail
Open/Download
IconBlanchet_Adrien.pdf (1.115Mb)
Publication date
2008-10-01
Metadata
Show full item record
Cómo citar
Blanchet, Adrien
Cómo citar
Travelling fronts in stochastic Stokes' drifts
.
Copiar
Cerrar

Author
  • Blanchet, Adrien;
  • Dolbeault, Jean;
  • Kowalczyk, Michal;
Abstract
By analytical methods we study the large time properties of the solution of a simple one-dimensional model of stochastic Stokes' drift. Semi-explicit formulae allow us to characterize the behaviour of the solutions and compute global quantities such as the asymptotic speed of the center of mass or the effective diffusion coefficient. Using an equivalent tilted ratchet model, we observe that the speed of the center of mass converges exponentially to its limiting value. A diffuse, oscillating front attached to the center of mass appears. The description of the front is given using an asymptotic expansion. The asymptotic solution attracts all solutions at an algebraic rate which is determined by the effective diffusion coefficient. The proof relies on an entropy estimate based on homogenized logarithmic Sobolev inequalities. In the travelling frame, the macroscopic profile obeys to an isotropic diffusion. Compared with the original diffusion, diffusion is enhanced or reduced, depending on the regime. At least in the limit cases, the rate of convergence to the effective profile is always decreased. All these considerations allow us to define a notion of efficiency for coherent transport, characterized by a dimensionless number, which is illustrated on two simple examples of travelling potentials with a sinusoidal shape in the first case, and a sawtooth shape in the second case.
Patrocinador
ECOS-CONICYT C05E09 C05E05 KAUST investigator award FONDECYT 1050311 Nucleo Milenio P04-069-F FONDAP
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125070
DOI: 10.1016/j.physa.2008.06.011
ISSN: 0378-4371
Quote Item
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS Volume: 387 Issue: 23 Pages: 5741-5751 Published: OCT 1 2008
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account