About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Blood flow dynamics and fluid-structure interaction in patient-specific bifurcating cerebral aneurysms

Artículo
Thumbnail
Open/Download
IconValencia_Alvar.pdf (1.300Mb)
Publication date
2008-12-10
Metadata
Show full item record
Cómo citar
Valencia Musalem, Álvaro
Cómo citar
Blood flow dynamics and fluid-structure interaction in patient-specific bifurcating cerebral aneurysms
.
Copiar
Cerrar
Author
  • Valencia Musalem, Álvaro;
  • Ledermann, Darren;
  • Rivera, Rodrigo;
  • Bravo, Eduardo;
  • Gálvez, Marcelo;
Abstract
Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The current work describes the blood flow dynamics and fluid–structure interaction in seven patient-specific models of bifurcating cerebral aneurysms located in the anterior and posterior circulation regions of the circle of Willis. The models were obtained from 3D rotational angiography image data, and blood flow dynamics and fluid–structure interaction were studied under physiologically representative waveform of inflow. The arterial wall was assumed to be elastic, isotropic and homogeneous. The flow was assumed to be laminar, non-Newtonian and incompressible. In one case, the effects of different model suppositions and boundary conditions were reported in detail. The fully coupled fluid and structure models were solved with the finite elements package ADINA. The vortex structure, pressure, wall shear stress (WSS), effective stress and displacement of the aneurysm wall showed large variations, depending on the morphology of the artery, aneurysm size and position. The time-averaged WSS, effective stress and displacement at the aneurysm fundus vary between 0.17 and 4.86 Pa, 4.35 and 170.2 kPa and 0.16 and 0.74 mm, respectively, for the seven patient-specific models of bifurcating cerebral aneurysms. Copyright q 2008 John Wiley & Sons, Ltd.
Patrocinador
The financial support received from FONDECYT Chile under grant number 1070773 is recognized and appreciated.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125227
ISSN: 0271-2091
Quote Item
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Volume: 58, Issue: 10, Pages: 1081-1100, 2008
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account