About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Magnetic field evolution in neutron stars: one-dimensional multi-fluid model

Artículo
Thumbnail
Open/Download
IconHoyos_J.pdf (694.1Kb)
Publication date
2008-09
Metadata
Show full item record
Cómo citar
Hoyos, J.
Cómo citar
Magnetic field evolution in neutron stars: one-dimensional multi-fluid model
.
Copiar
Cerrar

Author
  • Hoyos, J.;
  • Reisenegger, Andreas;
  • Valdivia Hepp, Juan;
Abstract
Aims. This paper is the first in a series that aims to understand the long-term evolution of neutron star magnetic fields. Methods. We model the stellar matter as an electrically neutral and lightly-ionized plasma composed of three moving particle species: neutrons, protons, and electrons; these species can be converted into each other by weak interactions (beta decays), suffer binary collisions, and be affected by each other's macroscopic electromagnetic fields. Since the evolution of the magnetic field occurs over thousands of years or more, compared to dynamical timescales (sound and Alfven) of milliseconds to seconds, we use a slow-motion approximation in which we neglect the inertial terms in the equations of motion for the particles. This approximation leads to three nonlinear partial-differential equations describing the evolution of the magnetic field, as well as the movement of two fluids: the charged particles (protons and electrons) and the neutrons. These equations are first rather than second order in time (involving the velocities of the three species but not their accelerations). Results. In this paper, we restrict ourselves to a one-dimensional geometry in which the magnetic field points in one Cartesian direction, but varies only along an orthogonal direction. We study the evolution of the system in three different ways: (i) estimating timescales directly from the equations, guided by physical intuition; (ii) a normal-mode analysis in the limit of a nearly uniform system; and (iii) a finite-difference numerical integration of the full set of nonlinear partial-differential equations. We find good agreement between our analytical normal-mode solutions and the numerical simulations. We show that the magnetic field and the particles evolve through successive quasi-equilibrium states, on timescales that can be understood by physical arguments. Depending on parameter values, the magnetic field can evolve by ohmic diffusion or by ambipolar diffusion, the latter being limited either by interparticle collisions or by relaxation to chemical quasi-equilibrium through beta decays. The numerical simulations are further validated by verifying that they satisfy the known conservation laws in highly nonlinear situations.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125239
DOI: 10.1051/0004-6361:200809466
ISSN: 0004-6361
Quote Item
ASTRONOMY & ASTROPHYSICS Volume: 487 Issue: 3 Pages: 789-803 Published: SEP 2008
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account