About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Towards the Distribution of the Size of a Largest Planar Matching and Largest Planar Subgraph in Random Bipartite Graphs

Artículo
Thumbnail
Open/Download
IconKIWI_MARCOS.pdf (313.4Kb)
Publication date
2008-10-20
Metadata
Show full item record
Cómo citar
Kiwi Krauskopf, Marcos
Cómo citar
Towards the Distribution of the Size of a Largest Planar Matching and Largest Planar Subgraph in Random Bipartite Graphs
.
Copiar
Cerrar

Author
  • Kiwi Krauskopf, Marcos;
  • Loebl, Martín;
Abstract
We address the following question: When a randomly chosen regular bipartite multi-graph is drawn in the plane in the "standard way", what is the distribution of its maximum size planar matching (set of non-crossing disjoint edges) and maximum size planar sub-graph (set of non-crossing edges which may share endpoints)? The problem is a generalization of the Longest Increasing Sequence (LIS) problem (also called Ulam's problem). We present combinatorial identities which relate the number of r-regular bipartite multi-graphs with maximum planar matching (maximum planar subgraph) of at most d edges to a signed sum of restricted lattice walks in Z(d), and to the number of pairs of standard Young tableaux of the same shape and with a "descend-type" property. Our results are derived via generalizations of two combinatorial proofs through which Gessel's identity can be obtained (an identity that is crucial in the derivation of a bivariate generating function associated to the distribution of the length of LISs, and key to the analytic attack on Ulam's problem). Finally, we generalize Gessel's identity. This enables us to count, for small values of d and r, the number of r-regular bipartite multi-graphs on n nodes per color class with maximum planar matchings of size d. Our work can also be viewed as a first step in the study of pattern avoidance in ordered bipartite multi-graphs.
Patrocinador
MIDEPLAN ICM-P01-05 CONICYT FONDECYT 1010689 FONDAP in Applied Mathematics Anillo en Redes ACT08 ICM-P01-05
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125249
ISSN: 1077-8926
Quote Item
ELECTRONIC JOURNAL OF COMBINATORICS Volume: 15 Issue: 1 Article Number: R135 Published: OCT 20 2008
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account