Show simple item record

Authordc.contributor.authorKiwi Krauskopf, Marcos es_CL
Authordc.contributor.authorSoto San Martín, José 
Admission datedc.date.accessioned2010-04-22T19:13:35Z
Available datedc.date.available2010-04-22T19:13:35Z
Publication datedc.date.issued2009
Cita de ítemdc.identifier.citationCombinatorics, Probability and Computing (2009) 00, 1–16en_US
Identifierdc.identifier.otherdoi:10.1017/S0963548309009900
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125303
Abstractdc.description.abstractIt is well known that, when normalized by n, the expected length of a longest common subsequence of d sequences of length n over an alphabet of size σ converges to a constant γσ,d. We disprove a speculation by Steele regarding a possible relation between γ2,d and γ2,2. In order to do that we also obtain some new lower bounds for γσ,d, when both σ and d are small integers.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherCambridge University Pressen_US
Títulodc.titleOn a Speculated Relation Between Chvátal–Sankoff Constants of Several Sequencesen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record