About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Magnetic polarity zonation within the El Teniente copper–molybdenum porphyry deposit, central Chile

Artículo
Thumbnail
Open/Download
IconAstudillo_Natalia.pdf (2.793Mb)
Publication date
2010
Metadata
Show full item record
Cómo citar
Astudillo Leyton, Natalia
Cómo citar
Magnetic polarity zonation within the El Teniente copper–molybdenum porphyry deposit, central Chile
.
Copiar
Cerrar

Author
  • Astudillo Leyton, Natalia;
  • Roperch, Pierrick;
  • Townley Callejas, Brian;
  • Arriagada Ortega, César;
  • Chauvin, Annick;
Abstract
El Teniente porphyry copper deposit, the world’s greatest intrusion-related Cu–Mo ore body, is hosted within basaltic–andesitic volcanic and gabbroic rocks (mafic complex). This ore body is strongly affected by multiple events of alteration/mineralization with pervasive potassic and chloritic alteration and coetaneous with associated copper mineralization. We present paleomagnetic results obtained from oriented samples at four locations within the mine and from two drill cores, 200 and 400 m long, respectively. Samples are representative of all the main hydrothermally altered rock units, with emphasis on the mafic host rock and dacitic (Teniente dacite porphyry) and dioritic porphyry intrusions. Magnetic experiments [hysteresis loop, isothermal remanent magnetization (IRM), k–T curves, thermal, and alternating field demagnetization] show the presence of prevailing magnetite. Microscope and SEM observations show two families of magnetite, (a) large multidomain magnetite grains, associated with biotite and chlorite of various different hydrothermal alteration events, and (b) abundant small to medium grain-size magnetite (<10 μm) contained within plagioclase, either related to an early Na– Ca–Fe alteration or included within plagioclase during magmatic crystal growth. While the Teniente dacite porphyry and the quartz diorite–tonalite have low magnetic susceptibility (<0.0005 SI) and low natural remanent magnetization (NRM, 10−4–10−3 Am−1), the mineralized mafic host rocks have usually high susceptibility (>0.01 and up to 0.2 SI) with NRM in the range 0.1–2 Am−1. Most mafic complex rock samples have univectorial magnetizations during alternating field or thermal demagnetization. Within the mine, the magnetic polarity is spatially distributed. In the northern part of the deposit, the Teniente dacite porphyry, the associated hydrothermal breccias, and the hosting mafic complex record a reverse polarity magnetization, also observed in the El Teniente sub-6 mine sector immediately to the east and southeast. In the eastern part of the deposit, a normal polarity is observed for samples of the mafic complex from the two long drill cores. There is no evidence for superimposed magnetizations of opposite polarities in samples of the mafic complex. Anhysteretic remanent magnetization (ARM) in a DC field of 40 μT and NRM have similar magnitude and comparable behavior upon alternating field demagnetization. The well-defined strong remanent magnetizations associated with high unblocking temperatures (>500°C) indicate an acquisition of remanent magnetization during mineralization by circulating high temperature fluids related with ore deposition. Paleomagnetic results and the recorded polarity zonation suggest multiple mineralization events occurred at El Teniente, each one with its own evolution stages, superimposed within the district. These results indicate that a simplified broad four-stage model for El Teniente, as presented and overly employed by many authors, divided in (1) late magmatic, (2) main hydrothermal, (3) late hydrothermal, and (4) posthumous stage, does not recognize various short-lived single mineralization events, some superimposed and some distinctly separated in time and space. There is no paleomagnetic evidence for post-mineralization deformation.
Patrocinador
Original work was financed by project DID-I009- 99/2, University of Chile, and IRD, France.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125397
DOI: DOI 10.1007/s00126-009-0256-0
Quote Item
Miner Deposita (2010) 45:23–41
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account