Author | dc.contributor.author | Houot, Jean Gabriel | |
Author | dc.contributor.author | San Martín, Jorge | es_CL |
Author | dc.contributor.author | Tucsnak, Marius | es_CL |
Admission date | dc.date.accessioned | 2010-11-22T19:20:37Z | |
Available date | dc.date.available | 2010-11-22T19:20:37Z | |
Publication date | dc.date.issued | 2010-12-01 | |
Cita de ítem | dc.identifier.citation | JOURNAL OF FUNCTIONAL ANALYSIS Volume: 259 Issue: 11 Pages: 2856-2885 Published: DEC 1 2010 | en_US |
Identifier | dc.identifier.issn | 0022-1236 | |
Identifier | dc.identifier.other | DOI: 10.1016/j.jfa.2010.07.006 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125455 | |
Abstract | dc.description.abstract | In this paper, we study the motion of rigid bodies in a perfect incompressible
fluid. The rigid-fluid system fils a bounded domain in R3. Adapting
the strategy from Bourguignon and Brezis [1], we use the stream lines
of the fluid and we eliminate the pressure by solving a Neumann problem.
In this way, the system is reduced to an ordinary differential equation on a
closed infinite dimensional manifold. Using this formulation, we prove the
local in time existence and uniqueness of strong solutions. | en_US |
Patrocinador | dc.description.sponsorship | BASAL-CMM, Fondecyt 1090239 | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | en_US |
Keywords | dc.subject | INCOMPRESSIBLE PERFECT FLUID | en_US |
Título | dc.title | Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid | en_US |
Document type | dc.type | Artículo de revista | |