Show simple item record

Authordc.contributor.authorBludman, Sidney 
Authordc.contributor.authorKennedy, Dallas C. es_CL
Admission datedc.date.accessioned2011-06-02T18:49:46Z
Available datedc.date.available2011-06-02T18:49:46Z
Publication datedc.date.issued2011
Cita de ítemdc.identifier.citationJOURNAL OF MATHEMATICAL PHYSICS 52, 042902 (2011)es_CL
Identifierdc.identifier.otherdoi:10.1063/1.3576199
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125460
General notedc.descriptionArtículo de publicación ISIes_CL
Abstractdc.description.abstractBecause scaling symmetries of the Euler–Lagrange equations are generally not variational symmetries of the action, they do not lead to conservation laws. Instead, an extension of Noether’s theorem reduces the equations of motion to evolutionary laws that prove useful, even if the transformations are not symmetries of the equations of motion. In the case of scaling, symmetry leads to a scaling evolutionary law, a first-order equation in terms of scale invariants, linearly relating kinematic and dynamic degrees of freedom. This scaling evolutionary law appears in dynamical and in static systems. Applied to dynamical central-force systems, the scaling evolutionary equation leads to generalized virial laws, which linearly connect the kinetic and potential energies. Applied to barotropic hydrostatic spheres, the scaling evolutionary equation linearly connects the gravitational and internal energy densities. This implies well-known properties of polytropes, describing degenerate stars and chemically homogeneous nondegenerate stellar cores.es_CL
Lenguagedc.language.isoenes_CL
Publisherdc.publisherAmerican Institute of Physicses_CL
Títulodc.titleInvariant relationships deriving from classical scaling transformationses_CL
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record