Threshold condition for global existence and blow-up to a radially symmetric drift–diffusion system
Author | dc.contributor.author | Conca Rosende, Carlos | |
Author | dc.contributor.author | Espejo, Elio | es_CL |
Admission date | dc.date.accessioned | 2012-05-29T16:27:03Z | |
Available date | dc.date.available | 2012-05-29T16:27:03Z | |
Publication date | dc.date.issued | 2012 | |
Cita de ítem | dc.identifier.citation | Applied Mathematics Letters 25 (2012) 352–356 | es_CL |
Identifier | dc.identifier.other | doi:10.1016/j.aml.2011.09.013 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125611 | |
Abstract | dc.description.abstract | For a class of drift–diffusion systems Kurokiba et al. [M. Kurokiba, T. Nagai, T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift–diffusion system, Commun. Pure Appl. Anal. 5 (2006) 97–106.] proved global existence and uniform boundedness of the radial solutions when the L1-norm of the initial data satisfies a threshold condition. We prove in this letter that this result prescribes a region in the plane of masses which is sharp in the sense that if the drift–diffusion system is initiated outside the threshold region of global existence, then blow-up is possible: suitable initial data can be built up in such a way that the corresponding solution blows up in a finite time. | es_CL |
Lenguage | dc.language.iso | en | es_CL |
Publisher | dc.publisher | Elsevier | es_CL |
Keywords | dc.subject | Blow-up | es_CL |
Título | dc.title | Threshold condition for global existence and blow-up to a radially symmetric drift–diffusion system | es_CL |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas