Show simple item record

Authordc.contributor.authorConca Rosende, Carlos 
Authordc.contributor.authorEspejo, Elio es_CL
Admission datedc.date.accessioned2012-05-29T16:27:03Z
Available datedc.date.available2012-05-29T16:27:03Z
Publication datedc.date.issued2012
Cita de ítemdc.identifier.citationApplied Mathematics Letters 25 (2012) 352–356es_CL
Identifierdc.identifier.otherdoi:10.1016/j.aml.2011.09.013
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125611
Abstractdc.description.abstractFor a class of drift–diffusion systems Kurokiba et al. [M. Kurokiba, T. Nagai, T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift–diffusion system, Commun. Pure Appl. Anal. 5 (2006) 97–106.] proved global existence and uniform boundedness of the radial solutions when the L1-norm of the initial data satisfies a threshold condition. We prove in this letter that this result prescribes a region in the plane of masses which is sharp in the sense that if the drift–diffusion system is initiated outside the threshold region of global existence, then blow-up is possible: suitable initial data can be built up in such a way that the corresponding solution blows up in a finite time.es_CL
Lenguagedc.language.isoenes_CL
Publisherdc.publisherElsevieres_CL
Keywordsdc.subjectBlow-upes_CL
Títulodc.titleThreshold condition for global existence and blow-up to a radially symmetric drift–diffusion systemes_CL
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record