About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Detecting and quantifying sources of non-stationarity via experimental semivariogram modeling

Artículo
Thumbnail
Open/Download
IconCuba_Miguel.pdf (1013.Kb)
Publication date
2012
Metadata
Show full item record
Cómo citar
Cuba, Miguel A.
Cómo citar
Detecting and quantifying sources of non-stationarity via experimental semivariogram modeling
.
Copiar
Cerrar

Author
  • Cuba, Miguel A.;
  • Leuangthong, Oy;
  • Ortiz Cabrera, Julián;
Abstract
Conventional geostatistics often relies on the assumption of second order stationarity of the random function (RF). Generally, local means and local variances of the random variables (RVs) are assumed to be constant throughout the domain. Large scale differences in the local means and local variances of the RVs are referred to as trends. Two problems of building geostatistical models in presence of mean trends are: (1) inflation of the conditional variances and (2) the spatial continuity is exaggerated. Variance trends on the other hand cause conditional variances to be over-estimated in certain regions of the domain and under-estimated in other areas. In both cases the uncertainty characterized by the geostatistical model is improperly assessed. This paper proposes a new approach to identify the presence and contribution of mean and variance trends in the domain via calculation of the experimental semivariogram. The traditional experimental semivariogram expression is decomposed into three components: (1) the mean trend, (2) the variance trend and (3) the stationary component. Under stationary conditions, both the mean and the variance trend components should be close to zero. This proposed approach is intended to be used in the early stages of data analysis when domains are being defined or to verify the impact of detrending techniques in the conditioning dataset for validating domains. This approach determines the source of a trend, thereby facilitating the choice of a suitable detrending method for effective resource modeling.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125613
DOI: DOI 10.1007/s00477-011-0501-9
Quote Item
Stoch Environ Res Risk Assess (2012) 26:247–260
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account