Show simple item record

Authordc.contributor.authorDuerr, Christoph 
Authordc.contributor.authorGuinez, Flavio es_CL
Authordc.contributor.authorMatamala Vásquez, Martín es_CL
Admission datedc.date.accessioned2012-05-31T15:41:17Z
Available datedc.date.available2012-05-31T15:41:17Z
Publication datedc.date.issued2012
Cita de ítemdc.identifier.citationSIAM JOURNAL ON DISCRETE MATHEMATICS Volume: 26 Issue: 1 Pages: 330-352 Published: 2012es_CL
Identifierdc.identifier.otherDOI: 10.1137/100799733
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125620
Abstractdc.description.abstractWe consider the problem of coloring a grid using k colors with the restriction that each row and each column has a specific number of cells of each color. This problem has been known as the (k - 1)-atom problem in the discrete tomography community. In an already classical result, Ryser obtained a necessary and sufficient condition for the existence of such a coloring when two colors are considered. This characterization yields a linear time algorithm for constructing such a coloring when it exists. Gardner et al. showed that for k >= 7 the problem is NP-hard. Afterward Chrobak and Durr improved this result by proving that it remains NP-hard for k >= 4. We close the gap by showing that for k = 3 colors the problem is already NP-hard. In addition, we give some results on tiling tomography problems.es_CL
Patrocinadordc.description.sponsorshipFONDAP BASAL-CMM Conicytes_CL
Lenguagedc.language.isoenes_CL
Publisherdc.publisherSIAM PUBLICATIONSes_CL
Keywordsdc.subjectdiscrete tomographyes_CL
Títulodc.titleReconstructing 3-colored grids from horizontal and vertical projections is NP-Hard: a solution to the 2-Atom problem in discrete tomographyes_CL
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record