About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Reconstructing 3-colored grids from horizontal and vertical projections is NP-Hard: a solution to the 2-Atom problem in discrete tomography

Artículo
Thumbnail
Open/Download
IconDurr_Christoph.pdf (605.7Kb)
Publication date
2012
Metadata
Show full item record
Cómo citar
Duerr, Christoph
Cómo citar
Reconstructing 3-colored grids from horizontal and vertical projections is NP-Hard: a solution to the 2-Atom problem in discrete tomography
.
Copiar
Cerrar

Author
  • Duerr, Christoph;
  • Guinez, Flavio;
  • Matamala Vásquez, Martín;
Abstract
We consider the problem of coloring a grid using k colors with the restriction that each row and each column has a specific number of cells of each color. This problem has been known as the (k - 1)-atom problem in the discrete tomography community. In an already classical result, Ryser obtained a necessary and sufficient condition for the existence of such a coloring when two colors are considered. This characterization yields a linear time algorithm for constructing such a coloring when it exists. Gardner et al. showed that for k >= 7 the problem is NP-hard. Afterward Chrobak and Durr improved this result by proving that it remains NP-hard for k >= 4. We close the gap by showing that for k = 3 colors the problem is already NP-hard. In addition, we give some results on tiling tomography problems.
Patrocinador
FONDAP BASAL-CMM Conicyt
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125620
DOI: DOI: 10.1137/100799733
Quote Item
SIAM JOURNAL ON DISCRETE MATHEMATICS Volume: 26 Issue: 1 Pages: 330-352 Published: 2012
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account