About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Boundary layers in the homogenization of a spectral problem in fluid-solid structures

Artículo
Thumbnail
Open/Download
IconAllaire_Gregoire_Boundary_layers.pdf (965.9Kb)
Publication date
1998-03
Metadata
Show full item record
Cómo citar
Allaire, Gregoire
Cómo citar
Boundary layers in the homogenization of a spectral problem in fluid-solid structures
.
Copiar
Cerrar

Author
  • Allaire, Gregoire;
  • Conca Rosende, Carlos;
Abstract
This paper is devoted to the asymptotic analysis of the spectrum of a mathematical model that describes the vibrations of a coupled fluid-solid periodic structure. In a previous work [Arch. Rational Mech. Anal., 135 (1996), pp. 197-257] we proved by means of a Bloch wave homogenization method that, in the limit as the period goes to zero, the spectrum is made of three parts: the macroscopic or homogenized spectrum, the microscopic or Bloch spectrum, and a third component, the so-called boundary layer spectrum. While the two first parts were completely described as the spectrum of some limit problem, the latter was merely defined as the set of limit eigenvalues corresponding to sequences of eigenvectors concentrating on the boundary. It is the purpose of this paper to characterize explicitly this boundary layer spectrum with the help of a family of limit problems revealing the intimate connection between the periodic microstructure and the boundary of the domain. We therefore obtain a "completeness" result, i.e., a precise description of all possible asymptotic behaviors of sequences of eigenvalues, at least for a special class of polygonal domains.
General note
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125788
DOI: DOI: 10.1137/S0036141096304328
Quote Item
SIAM JOURNAL ON MATHEMATICAL ANALYSIS Volume: 29 Issue: 2 Pages: 343-379 Published: MAR 1998
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account