Show simple item record

Authordc.contributor.authorBonnetier, E. 
Authordc.contributor.authorConca Rosende, Carlos es_CL
Admission datedc.date.accessioned2013-12-23T18:40:55Z
Available datedc.date.available2013-12-23T18:40:55Z
Publication datedc.date.issued1994
Cita de ítemdc.identifier.citationProceedings of the Royal Society of Edinburgh. 124A, 399-422,1994en_US
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125833
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractGiven a parametrised measure and a family of continuous functions (<pn), we construct a sequence of functions (uk) such that, as fc-> co, the functions fn(uk) converge to the corresponding moments of the measure, in the weak * topology. Using the sequence (uk) corresponding to a dense family of continuous functions, a proof of the fundamental theorem for Young measures is given. We apply these techniques to an optimal design problem for plates with variable thickness. The relaxation of the compliance functional involves three continuous functions of the thickness. We characterise a set of admissible generalised thicknesses, on which the relaxed functional attains its minimum.en_US
Lenguagedc.language.isoen_USen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectplates with variable thicknessen_US
Títulodc.titleApproximation of Young measures by functions and application to a problem of optimal design for plates with variable thicknessen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile