Forbidden subgraphs and the König–Egerváry property
Author
dc.contributor.author
Bonomo, Flavia
Author
dc.contributor.author
Dourado, Mitre C.
es_CL
Author
dc.contributor.author
Durán Maggiolo, Guillermo
es_CL
Author
dc.contributor.author
Faria, Luerbio
es_CL
Author
dc.contributor.author
Grippo, Luciano N.
es_CL
Author
dc.contributor.author
Safe, Martín D.
es_CL
Admission date
dc.date.accessioned
2014-01-08T20:26:09Z
Available date
dc.date.available
2014-01-08T20:26:09Z
Publication date
dc.date.issued
2013
Cita de ítem
dc.identifier.citation
Discrete Applied Mathematics 161 (2013) 2380–2388
en_US
Identifier
dc.identifier.other
DOI: 10.1016/j.dam.2013.04.020
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/126085
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
The matching number of a graph is the maximum size of a set of vertex-disjoint edges.
The transversal number is the minimum number of vertices needed to meet every edge.
A graph has the König–Egerváry property if its matching number equals its transversal
number. Lovász proved a characterization of graphs having the König–Egerváry property by
means of forbidden subgraphs within graphs with a perfect matching. Korach, Nguyen,
and Peis proposed an extension of Lovász’s result to a characterization of all graphs
having the König–Egerváry property in terms of forbidden configurations (which are
certain arrangements of a subgraph and a maximum matching). In this work, we prove
a characterization of graphs having the König–Egerváry property by means of forbidden
subgraphs which is a strengthened version of the characterization by Korach et al. Using
our characterization of graphs with the König–Egerváry property,wealso prove a forbidden
subgraph characterization for the class of edge-perfect graphs.