Show simple item record

Authordc.contributor.authorBriceño, Raimundo 
Authordc.contributor.authorEspanés, Pablo Moisset de es_CL
Authordc.contributor.authorOsses Alvarado, Axel es_CL
Authordc.contributor.authorRapaport Zimermann, Iván es_CL
Admission datedc.date.accessioned2014-01-10T18:47:59Z
Available datedc.date.available2014-01-10T18:47:59Z
Publication datedc.date.issued2013
Cita de ítemdc.identifier.citationPhysica D 261 (2013) 70–80en_US
Identifierdc.identifier.otherDOI:10.1016/j.physd.2013.07.002
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/126198
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractOne of the most studied inverse problems in cellular automata (CAs) is the density classification problem. It consists in finding a CA such that, given any initial configuration of 0s and 1s, it converges to the all- 1 fixed point configuration if the fraction of 1s is greater than the critical density 1/2, and it converges to the all-0 fixed point configuration otherwise. In this paper, we propose an original approach to solve this problem by designing a CA inspired by two mechanisms that are ubiquitous in nature: diffusion and nonlinear sigmoidal response. This CA, which is different from the classical ones because it has many states, has a success ratio of 100%, and works for any system size, any dimension, and any critical density.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherElsevieren_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectCellular automataen_US
Títulodc.titleSolving the density classification problem with a large diffusion and small amplification cellular automatonen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile