Supremum of the Airy2 Process Minus a Parabola on a Half Line
Author
dc.contributor.author
Quastel, Jeremy
Author
dc.contributor.author
Remenik Zisis, Daniel
es_CL
Admission date
dc.date.accessioned
2014-02-12T20:43:44Z
Available date
dc.date.available
2014-02-12T20:43:44Z
Publication date
dc.date.issued
2013
Cita de ítem
dc.identifier.citation
J Stat Phys (2013) 150:442–456
en_US
Identifier
dc.identifier.other
DOI 10.1007/s10955-012-0633-4
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/126405
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
Let A2(t) be the Airy2 process. We show that the random variable
sup
t≤α
A2(t) −t 2 +min{0,α}2
has the same distribution as the one-point marginal of the Airy2→1 process at time α. These
marginals form a family of distributions crossing over from the GUE Tracy-Widom distribution
FGUE(x) for the Gaussian Unitary Ensemble of random matrices, to a rescaled version
of the GOE Tracy-Widom distribution FGOE(41/3x) for the Gaussian Orthogonal Ensemble.
Furthermore, we show that for every α the distribution has the same right tail decay e
−43
x3/2 .