Pulsating fronts for nonlocal dispersion and KPP nonlinearity
Author
dc.contributor.author
Coville, Jérôme
Author
dc.contributor.author
Dávila Bonczos, Juan
es_CL
Author
dc.contributor.author
Martínez Salazar, Salomé
es_CL
Admission date
dc.date.accessioned
2014-03-10T20:14:01Z
Available date
dc.date.available
2014-03-10T20:14:01Z
Publication date
dc.date.issued
2013
Cita de ítem
dc.identifier.citation
Ann. I. H. Poincaré – AN 30 (2013) 179–223
en_US
Identifier
dc.identifier.other
doi 10.1016/j.anihpc.2012.07.005
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/126435
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
In this paper we are interested in propagation phenomena for nonlocal reaction–diffusion equations of the type:
∂u
∂t = J ∗ u −u+ f (x,u) t ∈ R, x ∈ RN,
where J is a probability density and f is a KPP nonlinearity periodic in the x variables. Under suitable assumptions we establish
the existence of pulsating fronts describing the invasion of the 0 state by a heterogeneous state. We also give a variational
characterization of the minimal speed of such pulsating fronts and exponential bounds on the asymptotic behavior of the solution.