Pulsating fronts for nonlocal dispersion and KPP nonlinearity
Artículo
Open/ Download
Publication date
2013Metadata
Show full item record
Cómo citar
Coville, Jérôme
Cómo citar
Pulsating fronts for nonlocal dispersion and KPP nonlinearity
Abstract
In this paper we are interested in propagation phenomena for nonlocal reaction–diffusion equations of the type:
∂u
∂t = J ∗ u −u+ f (x,u) t ∈ R, x ∈ RN,
where J is a probability density and f is a KPP nonlinearity periodic in the x variables. Under suitable assumptions we establish
the existence of pulsating fronts describing the invasion of the 0 state by a heterogeneous state. We also give a variational
characterization of the minimal speed of such pulsating fronts and exponential bounds on the asymptotic behavior of the solution.
General note
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/126435
DOI: doi 10.1016/j.anihpc.2012.07.005
Quote Item
Ann. I. H. Poincaré – AN 30 (2013) 179–223
Collections