Show simple item record

Authordc.contributor.authorTrofimchuk, Elena 
Authordc.contributor.authorPinto Jiménez, Manuel es_CL
Authordc.contributor.authorTrofimchuk, Sergei es_CL
Admission datedc.date.accessioned2014-03-11T14:38:33Z
Available datedc.date.available2014-03-11T14:38:33Z
Publication datedc.date.issued2013-05
Cita de ítemdc.identifier.citationDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS Volume 33, Number 5, May 2013en_US
Identifierdc.identifier.otherdoi:10.3934/dcds.2013.33.2169
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/126436
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractWe study the wavefront solutions of the scalar reaction-diffusion equations ut(t, x) = Δu(t, x)-u(t, x)+g(u(t-h,x)), with monotone reaction term g : ℝ+ → ℝ+ and h > 0. We are mostly interested in the situation when the graph of g is not dominated by its tangent line at zero, i.e. when the condition g(x) ≤ g'(0)x, x ≥ 0, is not satisfied. It is well known that, in such a case, a special type of rapidly decreasing wavefronts (pushed fronts) can appear in non-delayed equations (i.e. with h = 0). One of our main goals here is to establish a similar result for h > 0. To this end, we describe the asymptotics of all wavefronts (including critical and non-critical fronts) at -∞. We also prove the uniqueness of wavefronts (up to a translation). In addition, a new uniqueness result for a class of nonlocal lattice equations is presented.en_US
Lenguagedc.language.isoenen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Títulodc.titlePUSHED TRAVELING FRONTS IN MONOSTABLE EQUATIONS WITH MONOTONE DELAYED REACTIONen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile