About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Observations of gas flows inside a protoplanetary gap

Artículo
Thumbnail
Open/Download
IconObservations of gas flows inside a protoplanetary.pdf (8.829Mb)
Publication date
2013-01-10
Metadata
Show full item record
Cómo citar
Van der Plas, Gerrit
Cómo citar
Observations of gas flows inside a protoplanetary gap
.
Copiar
Cerrar

Author
  • Van der Plas, Gerrit;
  • Pérez M., Sebastián;
  • Dent, William R. F.;
  • Fomalont, Ed;
  • Hagelberg, Janis;
  • Hales, Antonio;
  • Jordán, Andrés;
  • Mawet, Dimitri;
  • Ménard, Francois;
  • Wootten, Al;
  • Wilner, David;
  • Hughes, A. Meredith;
  • Schreiber, Matthias R.;
  • Girard, Julien H.;
  • Ercolano, Bárbara;
  • Canovas, Héctor;
  • Román, Pablo E.;
  • Casassus Montero, Simón;
  • Salinas, Vachail;
Abstract
The formation of gaseous giant planets is thought to occur in the first few million years after stellar birth. Models1 predict that the process produces a deep gap in the dust component (shallower in the gas2, 3, 4). Infrared observations of the disk around the young star HD 142527 (at a distance of about 140 parsecs from Earth) found an inner disk about 10 astronomical units (AU) in radius5 (1 AU is the Earth–Sun distance), surrounded by a particularly large gap6 and a disrupted7 outer disk beyond 140 AU. This disruption is indicative of a perturbing planetary-mass body at about 90 AU. Radio observations8, 9 indicate that the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology8. The high stellar accretion rate10 would deplete the inner disk11 in less than one year, and to sustain the observed accretion matter must therefore flow from the outer disk and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk12. Here we report observations of diffuse CO gas inside the gap, with denser HCO+ gas along gap-crossing filaments. The estimated flow rate of the gas is in the range of 7 × 10−9 to 2 × 10−7 solar masses per year, which is sufficient to maintain accretion onto the star at the present rate.
General note
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/126465
DOI: doi:10.1038
Quote Item
Nature 493, Nº7431. 191–194 (10 January 2013).
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account